Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
,
Schritt 1
Schritt 1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.2.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Dividiere durch .
Schritt 1.2.3.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 1.2.3.1.3
Schreibe als um.
Schritt 1.2.3.1.4
Mutltipliziere mit .
Schritt 1.2.3.1.5
Bringe die negative Eins aus dem Nenner von .
Schritt 1.2.3.1.6
Schreibe als um.
Schritt 1.2.3.1.7
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Vereinfache.
Schritt 2.2.1.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.2.3
Mutltipliziere mit .
Schritt 2.2.1.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Addiere und .
Schritt 3.3
Faktorisiere die linke Seite der Gleichung.
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.1.1
Stelle und um.
Schritt 3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.3
Faktorisiere aus heraus.
Schritt 3.3.1.4
Faktorisiere aus heraus.
Schritt 3.3.1.5
Faktorisiere aus heraus.
Schritt 3.3.1.6
Faktorisiere aus heraus.
Schritt 3.3.2
Faktorisiere.
Schritt 3.3.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 3.3.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.3.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.3.2.2
Entferne unnötige Klammern.
Schritt 3.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6
Setze gleich und löse nach auf.
Schritt 3.6.1
Setze gleich .
Schritt 3.6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.1.1.1.1
Mutltipliziere mit .
Schritt 4.2.1.1.1.1.1
Potenziere mit .
Schritt 4.2.1.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.1.1.1.2
Addiere und .
Schritt 4.2.1.1.2
Potenziere mit .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.2
Vereinfache durch Addieren von Zahlen.
Schritt 4.2.1.2.1
Addiere und .
Schritt 4.2.1.2.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinfache jeden Term.
Schritt 5.2.1.1.1
Potenziere mit .
Schritt 5.2.1.1.2
Mutltipliziere mit .
Schritt 5.2.1.1.3
Mutltipliziere mit .
Schritt 5.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 5.2.1.2.1
Addiere und .
Schritt 5.2.1.2.2
Subtrahiere von .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8