Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 3
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.1.5
Mutltipliziere mit .
Schritt 4.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Subtrahiere von .
Schritt 4.2.3
Addiere und .
Schritt 5
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 6
Schritt 6.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
Schritt 6.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
Schritt 6.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.7
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.8
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.9
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 6.10
Vereinfache das Quotientenpolynom.
Schritt 7
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Faktorisiere aus heraus.
Schritt 7.3
Faktorisiere aus heraus.
Schritt 8
Schreibe als um.
Schritt 9
Schritt 9.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 9.2
Entferne unnötige Klammern.
Schritt 10
Schritt 10.1
Faktorisiere aus heraus.
Schritt 10.1.1
Faktorisiere aus heraus.
Schritt 10.1.2
Faktorisiere aus heraus.
Schritt 10.1.3
Faktorisiere aus heraus.
Schritt 10.1.4
Faktorisiere aus heraus.
Schritt 10.1.5
Faktorisiere aus heraus.
Schritt 10.1.6
Faktorisiere aus heraus.
Schritt 10.1.7
Faktorisiere aus heraus.
Schritt 10.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 10.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 10.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 10.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 10.4
Schreibe als um.
Schritt 10.5
Faktorisiere.
Schritt 10.5.1
Faktorisiere.
Schritt 10.5.1.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 10.5.1.2
Entferne unnötige Klammern.
Schritt 10.5.2
Entferne unnötige Klammern.
Schritt 11
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 12
Schritt 12.1
Setze gleich .
Schritt 12.2
Addiere zu beiden Seiten der Gleichung.
Schritt 13
Schritt 13.1
Setze gleich .
Schritt 13.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 14
Schritt 14.1
Setze gleich .
Schritt 14.2
Addiere zu beiden Seiten der Gleichung.
Schritt 15
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 16