Finite Mathematik Beispiele

Finde die Nullstellen mithilfe des Lemmas von Gauß 4x^3-2x^2+48x
Schritt 1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 3
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 4
Vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.1.5
Mutltipliziere mit .
Schritt 4.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Addiere und .
Schritt 4.2.2
Addiere und .
Schritt 5
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 6
Als Nächstes bestimme die Wurzeln des verbleibenden Polynoms. Der Grad des Polynoms ist um reduziert worden.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
  
Schritt 6.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
  
Schritt 6.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.7
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
 
Schritt 6.8
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
 
Schritt 6.9
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 6.10
Vereinfache das Quotientenpolynom.
Schritt 7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Faktorisiere aus heraus.
Schritt 7.3
Faktorisiere aus heraus.
Schritt 7.4
Faktorisiere aus heraus.
Schritt 7.5
Faktorisiere aus heraus.
Schritt 8
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Faktorisiere aus heraus.
Schritt 8.2
Faktorisiere aus heraus.
Schritt 8.3
Faktorisiere aus heraus.
Schritt 8.4
Faktorisiere aus heraus.
Schritt 8.5
Faktorisiere aus heraus.
Schritt 9
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 10
Setze gleich .
Schritt 11
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Setze gleich .
Schritt 11.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 11.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 11.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.3.1.1
Potenziere mit .
Schritt 11.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.3.1.2.1
Mutltipliziere mit .
Schritt 11.2.3.1.2.2
Mutltipliziere mit .
Schritt 11.2.3.1.3
Subtrahiere von .
Schritt 11.2.3.1.4
Schreibe als um.
Schritt 11.2.3.1.5
Schreibe als um.
Schritt 11.2.3.1.6
Schreibe als um.
Schritt 11.2.3.2
Mutltipliziere mit .
Schritt 11.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.4.1.1
Potenziere mit .
Schritt 11.2.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.4.1.2.1
Mutltipliziere mit .
Schritt 11.2.4.1.2.2
Mutltipliziere mit .
Schritt 11.2.4.1.3
Subtrahiere von .
Schritt 11.2.4.1.4
Schreibe als um.
Schritt 11.2.4.1.5
Schreibe als um.
Schritt 11.2.4.1.6
Schreibe als um.
Schritt 11.2.4.2
Mutltipliziere mit .
Schritt 11.2.4.3
Ändere das zu .
Schritt 11.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.5.1.1
Potenziere mit .
Schritt 11.2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.5.1.2.1
Mutltipliziere mit .
Schritt 11.2.5.1.2.2
Mutltipliziere mit .
Schritt 11.2.5.1.3
Subtrahiere von .
Schritt 11.2.5.1.4
Schreibe als um.
Schritt 11.2.5.1.5
Schreibe als um.
Schritt 11.2.5.1.6
Schreibe als um.
Schritt 11.2.5.2
Mutltipliziere mit .
Schritt 11.2.5.3
Ändere das zu .
Schritt 11.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 12
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 13