Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.5
Der Teiler von ist selbst.
occurs time.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Forme den Ausdruck um.
Schritt 2.2.2
Wende das Distributivgesetz an.
Schritt 2.2.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.3.1
Bewege .
Schritt 2.2.3.2
Mutltipliziere mit .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache jeden Term.
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.3
Forme den Ausdruck um.
Schritt 2.3.1.2
Wende das Distributivgesetz an.
Schritt 2.3.1.3
Mutltipliziere mit .
Schritt 2.3.1.4
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.3.1.4.1
Wende das Distributivgesetz an.
Schritt 2.3.1.4.2
Wende das Distributivgesetz an.
Schritt 2.3.1.4.3
Wende das Distributivgesetz an.
Schritt 2.3.1.5
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.3.1.5.1
Ordne die Faktoren in den Termen und neu an.
Schritt 2.3.1.5.2
Subtrahiere von .
Schritt 2.3.1.5.3
Addiere und .
Schritt 2.3.1.6
Vereinfache jeden Term.
Schritt 2.3.1.6.1
Mutltipliziere mit .
Schritt 2.3.1.6.2
Mutltipliziere mit .
Schritt 2.3.1.7
Wende das Distributivgesetz an.
Schritt 2.3.1.8
Mutltipliziere mit .
Schritt 2.3.2
Addiere und .
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.1.3.1
Subtrahiere von .
Schritt 3.1.3.2
Addiere und .
Schritt 3.1.4
Addiere und .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Dividiere durch .
Schritt 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: