Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.5
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.7
Der Teiler von ist selbst.
occurs time.
Schritt 1.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.9
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.2.1
Bewege .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.3.2
Faktorisiere aus heraus.
Schritt 2.2.1.3.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.4
Forme den Ausdruck um.
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.4
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Faktorisiere durch Gruppieren.
Schritt 3.2.1
Stelle die Terme um.
Schritt 3.2.2
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Schreibe um als plus
Schritt 3.2.2.3
Wende das Distributivgesetz an.
Schritt 3.2.3
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 3.2.3.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.2.3.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.2.4
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Schritt 3.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.2.1.2
Dividiere durch .
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: