Finite Mathematik Beispiele

x 구하기 y=(25-x^2)/(8+x^2)
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Faktorisiere jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2
Entferne die Klammern.
Schritt 3.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Multipliziere jeden Term in mit .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Forme den Ausdruck um.
Schritt 4.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Wende das Distributivgesetz an.
Schritt 4.2.2.2
Wende das Distributivgesetz an.
Schritt 4.2.2.3
Wende das Distributivgesetz an.
Schritt 4.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.1
Mutltipliziere mit .
Schritt 4.2.3.1.2
Mutltipliziere mit .
Schritt 4.2.3.1.3
Bringe auf die linke Seite von .
Schritt 4.2.3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.2.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.5.1
Bewege .
Schritt 4.2.3.1.5.2
Mutltipliziere mit .
Schritt 4.2.3.2
Addiere und .
Schritt 4.2.3.3
Addiere und .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Wende das Distributivgesetz an.
Schritt 4.3.2
Bringe auf die linke Seite von .
Schritt 5
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Faktorisiere aus heraus.
Schritt 5.3.3
Faktorisiere aus heraus.
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4.3.2
Schreibe als um.
Schritt 5.4.3.3
Faktorisiere aus heraus.
Schritt 5.4.3.4
Faktorisiere aus heraus.
Schritt 5.4.3.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.