Finite Mathematik Beispiele

y 구하기 x^2-2x-14+y^2-2y=0
Schritt 1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Potenziere mit .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.1
Mutltipliziere mit .
Schritt 3.1.4.2
Mutltipliziere mit .
Schritt 3.1.5
Addiere und .
Schritt 3.1.6
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.6.1.1
Faktorisiere aus heraus.
Schritt 3.1.6.1.2
Faktorisiere aus heraus.
Schritt 3.1.6.1.3
Faktorisiere aus heraus.
Schritt 3.1.6.1.4
Faktorisiere aus heraus.
Schritt 3.1.6.1.5
Faktorisiere aus heraus.
Schritt 3.1.6.2
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.6.2.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.6.2.1.1
Faktorisiere aus heraus.
Schritt 3.1.6.2.1.2
Schreibe um als plus
Schritt 3.1.6.2.1.3
Wende das Distributivgesetz an.
Schritt 3.1.6.2.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.6.2.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.1.6.2.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.1.6.2.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.7.1
Schreibe als um.
Schritt 3.1.7.2
Füge Klammern hinzu.
Schritt 3.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache .
Schritt 4
Die endgültige Lösung ist die Kombination beider Lösungen.