Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Faktorisiere aus heraus.
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Faktorisiere aus heraus.
Schritt 1.3.3
Faktorisiere aus heraus.
Schritt 1.3.4
Faktorisiere aus heraus.
Schritt 1.3.5
Faktorisiere aus heraus.
Schritt 1.4
Faktorisiere.
Schritt 1.4.1
Faktorisiere durch Gruppieren.
Schritt 1.4.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 1.4.1.1.1
Faktorisiere aus heraus.
Schritt 1.4.1.1.2
Schreibe um als plus
Schritt 1.4.1.1.3
Wende das Distributivgesetz an.
Schritt 1.4.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 1.4.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.4.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.4.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.4.2
Entferne unnötige Klammern.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.4
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Der Teiler von ist selbst.
occurs time.
Schritt 2.8
Der Teiler von ist selbst.
occurs time.
Schritt 2.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.10
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2
Kombiniere und .
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.2
Forme den Ausdruck um.
Schritt 3.2.1.4
Wende das Distributivgesetz an.
Schritt 3.2.1.5
Mutltipliziere mit .
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.7.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.7.2
Faktorisiere aus heraus.
Schritt 3.2.1.7.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.7.4
Forme den Ausdruck um.
Schritt 3.2.1.8
Mutltipliziere mit .
Schritt 3.2.1.9
Wende das Distributivgesetz an.
Schritt 3.2.1.10
Mutltipliziere mit .
Schritt 3.2.1.11
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache durch Addieren von Termen.
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Addiere und .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.4
Forme den Ausdruck um.
Schritt 4
Schritt 4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.1.2
Subtrahiere von .
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: