Finite Mathematik Beispiele

Bestimme, ob echt oder unecht h(x)=(x-1)^2+2
Schritt 1
Eine rationale Funktion ist jede Funktion, die als Quotient zweier Polynomfunktionen geschrieben werden kann, wobei der Zähler nicht ist.
ist eine rationale Funktion
Schritt 2
kann geschrieben werden als .
Schritt 3
Eine rationale Funktion ist echt, wenn der Grad des Zählers kleiner ist als der Grad des Nenners, andernfalls ist sie unecht.
Ein Zähler mit einem Grad kleiner als der des Nenners impliziert eine echte Funktion
Ein Zähler mit einem Grad größer als der des Nenners impliziert eine unechte Funktion
Gleichheit der Grade von Zähler und Nenner impliziert eine unechte Funktion
Schritt 4
Ermittele den Grad des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache und ordne das Polynom neu an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Wende das Distributivgesetz an.
Schritt 4.1.2.2
Wende das Distributivgesetz an.
Schritt 4.1.2.3
Wende das Distributivgesetz an.
Schritt 4.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1.1
Mutltipliziere mit .
Schritt 4.1.3.1.2
Bringe auf die linke Seite von .
Schritt 4.1.3.1.3
Schreibe als um.
Schritt 4.1.3.1.4
Schreibe als um.
Schritt 4.1.3.1.5
Mutltipliziere mit .
Schritt 4.1.3.2
Subtrahiere von .
Schritt 4.2
Der größte Exponent ist der Grad des Polynoms.
Schritt 5
Der Ausdruck ist konstant, was bedeutet, er kann mit einem Faktor von umgeschrieben werden. Der Grad ist der höchste Exponent der Variablen.
Schritt 6
Der Grad des Zählers ist größer als der Grad des Nenners .
Schritt 7
Der Grad des Zählers ist größer als der Grad des Nenners, was bedeutet, dass eine unechte Funktion ist.
Uneigentlich