Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
h(100)=2h(100)=2 , g(200)=20g(200)=20
Schritt 1
h(100)=2h(100)=2, was bedeutet, dass (100,2)(100,2) ein Punkt auf der Geraden ist. g(200)=20g(200)=20, was bedeutet, dass (200,20)(200,20) ebenfalls ein Punkt auf der Geraden ist.
(100,2),(200,20)(100,2),(200,20)
Schritt 2
Schritt 2.1
Die Steigung ist gleich der Änderung von yy dividiert durch die Änderung von xx.
m=Änderung in yÄnderung in x
Schritt 2.2
Die Änderung von x ist gleich der Differenz zwischen den x-Koordinaten und die Änderung von y ist gleich der Differenz zwischen den y-Koordinaten.
m=y2-y1x2-x1
Schritt 2.3
Setze die Werte von x und y in die Gleichung ein, um die Steigung zu ermitteln.
m=20-(2)200-(100)
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Vereinfache den Zähler.
Schritt 2.4.1.1
Mutltipliziere -1 mit 2.
m=20-2200-(100)
Schritt 2.4.1.2
Subtrahiere 2 von 20.
m=18200-(100)
m=18200-(100)
Schritt 2.4.2
Vereinfache den Nenner.
Schritt 2.4.2.1
Mutltipliziere -1 mit 100.
m=18200-100
Schritt 2.4.2.2
Subtrahiere 100 von 200.
m=18100
m=18100
Schritt 2.4.3
Kürze den gemeinsamen Teiler von 18 und 100.
Schritt 2.4.3.1
Faktorisiere 2 aus 18 heraus.
m=2(9)100
Schritt 2.4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.4.3.2.1
Faktorisiere 2 aus 100 heraus.
m=2⋅92⋅50
Schritt 2.4.3.2.2
Kürze den gemeinsamen Faktor.
m=2⋅92⋅50
Schritt 2.4.3.2.3
Forme den Ausdruck um.
m=950
m=950
m=950
m=950
m=950
Schritt 3
Benutze die Steigung 950 und einen gegebenen Punkt (100,2), um x1 und y1 in der Punkt-Steigungs-Form y-y1=m(x-x1) zu substituieren, welche von der Gleichung für die Steigung m=y2-y1x2-x1 abgeleitet ist.
y-(2)=950⋅(x-(100))
Schritt 4
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
y-2=950⋅(x-100)
Schritt 5
Schritt 5.1
Vereinfache 950⋅(x-100).
Schritt 5.1.1
Forme um.
y-2=0+0+950⋅(x-100)
Schritt 5.1.2
Vereinfache durch Addieren von Nullen.
y-2=950⋅(x-100)
Schritt 5.1.3
Wende das Distributivgesetz an.
y-2=950x+950⋅-100
Schritt 5.1.4
Kombiniere 950 und x.
y-2=9x50+950⋅-100
Schritt 5.1.5
Kürze den gemeinsamen Faktor von 50.
Schritt 5.1.5.1
Faktorisiere 50 aus -100 heraus.
y-2=9x50+950⋅(50(-2))
Schritt 5.1.5.2
Kürze den gemeinsamen Faktor.
y-2=9x50+950⋅(50⋅-2)
Schritt 5.1.5.3
Forme den Ausdruck um.
y-2=9x50+9⋅-2
y-2=9x50+9⋅-2
Schritt 5.1.6
Mutltipliziere 9 mit -2.
y-2=9x50-18
y-2=9x50-18
Schritt 5.2
Bringe alle Terme, die nicht y enthalten, auf die rechte Seite der Gleichung.
Schritt 5.2.1
Addiere 2 zu beiden Seiten der Gleichung.
y=9x50-18+2
Schritt 5.2.2
Addiere -18 und 2.
y=9x50-16
y=9x50-16
y=9x50-16
Schritt 6
Die endgültige Lösung ist die Gleichung in Normalform.
y=950x-16
Schritt 7
Ersetze y durch h(x).
h(x)=950x-16
Schritt 8