Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
,
Schritt 1
Der Zwischenwertsatz besagt, dass, wenn eine reellwertige, stetige Funktion im Intervall ist und eine Zahl zwischen und ist, dann ist ein im Intervall enthalten, sodass .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Schritt 3.1
Entferne die Klammern.
Schritt 3.2
Potenziere mit .
Schritt 3.3
Subtrahiere von .
Schritt 4
Schritt 4.1
Entferne die Klammern.
Schritt 4.2
Potenziere mit .
Schritt 4.3
Addiere und .
Schritt 5
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Potenziere mit .
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.2.4
Faktorisiere aus heraus.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Der Zwischenwertsatz besagt, dass es eine Wurzel im Intervall gibt, weil eine im Intervall stetige Funktion ist.
Die Wurzeln im Intervall befinden sich bei .
Schritt 7