Finite Mathematik Beispiele

Bestimme die durchschnittliche Änderungsrate f(x)=7x-3/4 , (0,100)
,
Schritt 1
Schreibe als Gleichung.
Schritt 2
Substituiere unter Verwendung der Formel für die durchschnittliche Änderungsrate.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Die durchschnittliche Änderungsrate einer Funktion kann ermittelt werden durch Berechnen des Quotienten aus der Änderung der -Werte der beiden Punkte und der Änderung der -Werte der beiden Punkte.
Schritt 2.2
Setze die Gleichung für und ein, wobei durch den entsprechenden -Wert ersetzt wird.
Schritt 3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multiply the numerator and denominator of the fraction by .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Mutltipliziere mit .
Schritt 3.1.2
Kombinieren.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Mutltipliziere mit .
Schritt 3.4.1.2
Mutltipliziere mit .
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Subtrahiere von .
Schritt 3.4.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Mutltipliziere mit .
Schritt 3.4.4.2
Mutltipliziere mit .
Schritt 3.4.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.5.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.5.2
Forme den Ausdruck um.
Schritt 3.4.6
Subtrahiere von .
Schritt 3.4.7
Addiere und .
Schritt 3.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Mutltipliziere mit .
Schritt 3.5.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Mutltipliziere mit .
Schritt 3.5.2.2
Mutltipliziere mit .
Schritt 3.5.3
Addiere und .
Schritt 3.6
Dividiere durch .