Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Consider the corresponding sign chart.
Schritt 2
Schritt 2.1
Calculate the minor for element .
Schritt 2.1.1
The minor for is the determinant with row and column deleted.
Schritt 2.1.2
Evaluate the determinant.
Schritt 2.1.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.1.2.1.1
Consider the corresponding sign chart.
Schritt 2.1.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.1.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.1.2.1.4
Multiply element by its cofactor.
Schritt 2.1.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.1.2.1.6
Multiply element by its cofactor.
Schritt 2.1.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.1.2.1.8
Multiply element by its cofactor.
Schritt 2.1.2.1.9
Add the terms together.
Schritt 2.1.2.2
Berechne .
Schritt 2.1.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.1.2.2.2
Vereinfache die Determinante.
Schritt 2.1.2.2.2.1
Vereinfache jeden Term.
Schritt 2.1.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.1.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.2.2.2
Subtrahiere von .
Schritt 2.1.2.3
Berechne .
Schritt 2.1.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.1.2.3.2
Vereinfache die Determinante.
Schritt 2.1.2.3.2.1
Vereinfache jeden Term.
Schritt 2.1.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.1.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.3.2.2
Subtrahiere von .
Schritt 2.1.2.4
Berechne .
Schritt 2.1.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.1.2.4.2
Vereinfache die Determinante.
Schritt 2.1.2.4.2.1
Vereinfache jeden Term.
Schritt 2.1.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.1.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.4.2.2
Subtrahiere von .
Schritt 2.1.2.5
Vereinfache die Determinante.
Schritt 2.1.2.5.1
Vereinfache jeden Term.
Schritt 2.1.2.5.1.1
Mutltipliziere mit .
Schritt 2.1.2.5.1.2
Mutltipliziere mit .
Schritt 2.1.2.5.1.3
Mutltipliziere mit .
Schritt 2.1.2.5.2
Addiere und .
Schritt 2.1.2.5.3
Addiere und .
Schritt 2.2
Calculate the minor for element .
Schritt 2.2.1
The minor for is the determinant with row and column deleted.
Schritt 2.2.2
Evaluate the determinant.
Schritt 2.2.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.2.2.1.1
Consider the corresponding sign chart.
Schritt 2.2.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.2.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.2.2.1.4
Multiply element by its cofactor.
Schritt 2.2.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.2.2.1.6
Multiply element by its cofactor.
Schritt 2.2.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.2.2.1.8
Multiply element by its cofactor.
Schritt 2.2.2.1.9
Add the terms together.
Schritt 2.2.2.2
Berechne .
Schritt 2.2.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.2.2.2.2
Vereinfache die Determinante.
Schritt 2.2.2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.2.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.2.2.2
Subtrahiere von .
Schritt 2.2.2.3
Berechne .
Schritt 2.2.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.2.2.3.2
Vereinfache die Determinante.
Schritt 2.2.2.3.2.1
Vereinfache jeden Term.
Schritt 2.2.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.2.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.3.2.2
Subtrahiere von .
Schritt 2.2.2.4
Berechne .
Schritt 2.2.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.2.2.4.2
Vereinfache die Determinante.
Schritt 2.2.2.4.2.1
Vereinfache jeden Term.
Schritt 2.2.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.2.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.4.2.2
Subtrahiere von .
Schritt 2.2.2.5
Vereinfache die Determinante.
Schritt 2.2.2.5.1
Vereinfache jeden Term.
Schritt 2.2.2.5.1.1
Mutltipliziere mit .
Schritt 2.2.2.5.1.2
Mutltipliziere mit .
Schritt 2.2.2.5.1.3
Mutltipliziere mit .
Schritt 2.2.2.5.2
Addiere und .
Schritt 2.2.2.5.3
Addiere und .
Schritt 2.3
Calculate the minor for element .
Schritt 2.3.1
The minor for is the determinant with row and column deleted.
Schritt 2.3.2
Evaluate the determinant.
Schritt 2.3.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.3.2.1.1
Consider the corresponding sign chart.
Schritt 2.3.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.3.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.3.2.1.4
Multiply element by its cofactor.
Schritt 2.3.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.3.2.1.6
Multiply element by its cofactor.
Schritt 2.3.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.3.2.1.8
Multiply element by its cofactor.
Schritt 2.3.2.1.9
Add the terms together.
Schritt 2.3.2.2
Berechne .
Schritt 2.3.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.3.2.2.2
Vereinfache die Determinante.
Schritt 2.3.2.2.2.1
Vereinfache jeden Term.
Schritt 2.3.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.3.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.3.2.2.2.2
Subtrahiere von .
Schritt 2.3.2.3
Berechne .
Schritt 2.3.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.3.2.3.2
Vereinfache die Determinante.
Schritt 2.3.2.3.2.1
Vereinfache jeden Term.
Schritt 2.3.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.3.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.3.2.3.2.2
Subtrahiere von .
Schritt 2.3.2.4
Berechne .
Schritt 2.3.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.3.2.4.2
Vereinfache die Determinante.
Schritt 2.3.2.4.2.1
Vereinfache jeden Term.
Schritt 2.3.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.3.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.3.2.4.2.2
Subtrahiere von .
Schritt 2.3.2.5
Vereinfache die Determinante.
Schritt 2.3.2.5.1
Vereinfache jeden Term.
Schritt 2.3.2.5.1.1
Mutltipliziere mit .
Schritt 2.3.2.5.1.2
Mutltipliziere mit .
Schritt 2.3.2.5.1.3
Mutltipliziere mit .
Schritt 2.3.2.5.2
Addiere und .
Schritt 2.3.2.5.3
Addiere und .
Schritt 2.4
Calculate the minor for element .
Schritt 2.4.1
The minor for is the determinant with row and column deleted.
Schritt 2.4.2
Evaluate the determinant.
Schritt 2.4.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.4.2.1.1
Consider the corresponding sign chart.
Schritt 2.4.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.4.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.4.2.1.4
Multiply element by its cofactor.
Schritt 2.4.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.4.2.1.6
Multiply element by its cofactor.
Schritt 2.4.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.4.2.1.8
Multiply element by its cofactor.
Schritt 2.4.2.1.9
Add the terms together.
Schritt 2.4.2.2
Berechne .
Schritt 2.4.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.4.2.2.2
Vereinfache die Determinante.
Schritt 2.4.2.2.2.1
Vereinfache jeden Term.
Schritt 2.4.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.4.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.4.2.2.2.2
Subtrahiere von .
Schritt 2.4.2.3
Berechne .
Schritt 2.4.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.4.2.3.2
Vereinfache die Determinante.
Schritt 2.4.2.3.2.1
Vereinfache jeden Term.
Schritt 2.4.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.4.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.4.2.3.2.2
Subtrahiere von .
Schritt 2.4.2.4
Berechne .
Schritt 2.4.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.4.2.4.2
Vereinfache die Determinante.
Schritt 2.4.2.4.2.1
Vereinfache jeden Term.
Schritt 2.4.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.4.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.4.2.4.2.2
Subtrahiere von .
Schritt 2.4.2.5
Vereinfache die Determinante.
Schritt 2.4.2.5.1
Vereinfache jeden Term.
Schritt 2.4.2.5.1.1
Mutltipliziere mit .
Schritt 2.4.2.5.1.2
Mutltipliziere mit .
Schritt 2.4.2.5.1.3
Mutltipliziere mit .
Schritt 2.4.2.5.2
Addiere und .
Schritt 2.4.2.5.3
Addiere und .
Schritt 2.5
Calculate the minor for element .
Schritt 2.5.1
The minor for is the determinant with row and column deleted.
Schritt 2.5.2
Evaluate the determinant.
Schritt 2.5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.5.2.1.1
Consider the corresponding sign chart.
Schritt 2.5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.5.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.5.2.1.4
Multiply element by its cofactor.
Schritt 2.5.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.5.2.1.6
Multiply element by its cofactor.
Schritt 2.5.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.5.2.1.8
Multiply element by its cofactor.
Schritt 2.5.2.1.9
Add the terms together.
Schritt 2.5.2.2
Berechne .
Schritt 2.5.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.5.2.2.2
Vereinfache die Determinante.
Schritt 2.5.2.2.2.1
Vereinfache jeden Term.
Schritt 2.5.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.5.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.5.2.2.2.2
Subtrahiere von .
Schritt 2.5.2.3
Berechne .
Schritt 2.5.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.5.2.3.2
Vereinfache die Determinante.
Schritt 2.5.2.3.2.1
Vereinfache jeden Term.
Schritt 2.5.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.5.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.5.2.3.2.2
Subtrahiere von .
Schritt 2.5.2.4
Berechne .
Schritt 2.5.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.5.2.4.2
Vereinfache die Determinante.
Schritt 2.5.2.4.2.1
Vereinfache jeden Term.
Schritt 2.5.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.5.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.5.2.4.2.2
Subtrahiere von .
Schritt 2.5.2.5
Vereinfache die Determinante.
Schritt 2.5.2.5.1
Vereinfache jeden Term.
Schritt 2.5.2.5.1.1
Mutltipliziere mit .
Schritt 2.5.2.5.1.2
Mutltipliziere mit .
Schritt 2.5.2.5.1.3
Mutltipliziere mit .
Schritt 2.5.2.5.2
Addiere und .
Schritt 2.5.2.5.3
Addiere und .
Schritt 2.6
Calculate the minor for element .
Schritt 2.6.1
The minor for is the determinant with row and column deleted.
Schritt 2.6.2
Evaluate the determinant.
Schritt 2.6.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.6.2.1.1
Consider the corresponding sign chart.
Schritt 2.6.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.6.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.6.2.1.4
Multiply element by its cofactor.
Schritt 2.6.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.6.2.1.6
Multiply element by its cofactor.
Schritt 2.6.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.6.2.1.8
Multiply element by its cofactor.
Schritt 2.6.2.1.9
Add the terms together.
Schritt 2.6.2.2
Berechne .
Schritt 2.6.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.6.2.2.2
Vereinfache die Determinante.
Schritt 2.6.2.2.2.1
Vereinfache jeden Term.
Schritt 2.6.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.6.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.6.2.2.2.2
Subtrahiere von .
Schritt 2.6.2.3
Berechne .
Schritt 2.6.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.6.2.3.2
Vereinfache die Determinante.
Schritt 2.6.2.3.2.1
Vereinfache jeden Term.
Schritt 2.6.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.6.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.6.2.3.2.2
Subtrahiere von .
Schritt 2.6.2.4
Berechne .
Schritt 2.6.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.6.2.4.2
Vereinfache die Determinante.
Schritt 2.6.2.4.2.1
Vereinfache jeden Term.
Schritt 2.6.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.6.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.6.2.4.2.2
Subtrahiere von .
Schritt 2.6.2.5
Vereinfache die Determinante.
Schritt 2.6.2.5.1
Vereinfache jeden Term.
Schritt 2.6.2.5.1.1
Mutltipliziere mit .
Schritt 2.6.2.5.1.2
Mutltipliziere mit .
Schritt 2.6.2.5.1.3
Mutltipliziere mit .
Schritt 2.6.2.5.2
Addiere und .
Schritt 2.6.2.5.3
Addiere und .
Schritt 2.7
Calculate the minor for element .
Schritt 2.7.1
The minor for is the determinant with row and column deleted.
Schritt 2.7.2
Evaluate the determinant.
Schritt 2.7.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.7.2.1.1
Consider the corresponding sign chart.
Schritt 2.7.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.7.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.7.2.1.4
Multiply element by its cofactor.
Schritt 2.7.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.7.2.1.6
Multiply element by its cofactor.
Schritt 2.7.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.7.2.1.8
Multiply element by its cofactor.
Schritt 2.7.2.1.9
Add the terms together.
Schritt 2.7.2.2
Berechne .
Schritt 2.7.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.7.2.2.2
Vereinfache die Determinante.
Schritt 2.7.2.2.2.1
Vereinfache jeden Term.
Schritt 2.7.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.7.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.7.2.2.2.2
Subtrahiere von .
Schritt 2.7.2.3
Berechne .
Schritt 2.7.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.7.2.3.2
Vereinfache die Determinante.
Schritt 2.7.2.3.2.1
Vereinfache jeden Term.
Schritt 2.7.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.7.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.7.2.3.2.2
Subtrahiere von .
Schritt 2.7.2.4
Berechne .
Schritt 2.7.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.7.2.4.2
Vereinfache die Determinante.
Schritt 2.7.2.4.2.1
Vereinfache jeden Term.
Schritt 2.7.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.7.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.7.2.4.2.2
Subtrahiere von .
Schritt 2.7.2.5
Vereinfache die Determinante.
Schritt 2.7.2.5.1
Vereinfache jeden Term.
Schritt 2.7.2.5.1.1
Mutltipliziere mit .
Schritt 2.7.2.5.1.2
Mutltipliziere mit .
Schritt 2.7.2.5.1.3
Mutltipliziere mit .
Schritt 2.7.2.5.2
Addiere und .
Schritt 2.7.2.5.3
Addiere und .
Schritt 2.8
Calculate the minor for element .
Schritt 2.8.1
The minor for is the determinant with row and column deleted.
Schritt 2.8.2
Evaluate the determinant.
Schritt 2.8.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.8.2.1.1
Consider the corresponding sign chart.
Schritt 2.8.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.8.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.8.2.1.4
Multiply element by its cofactor.
Schritt 2.8.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.8.2.1.6
Multiply element by its cofactor.
Schritt 2.8.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.8.2.1.8
Multiply element by its cofactor.
Schritt 2.8.2.1.9
Add the terms together.
Schritt 2.8.2.2
Berechne .
Schritt 2.8.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.8.2.2.2
Vereinfache die Determinante.
Schritt 2.8.2.2.2.1
Vereinfache jeden Term.
Schritt 2.8.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.8.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.8.2.2.2.2
Subtrahiere von .
Schritt 2.8.2.3
Berechne .
Schritt 2.8.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.8.2.3.2
Vereinfache die Determinante.
Schritt 2.8.2.3.2.1
Vereinfache jeden Term.
Schritt 2.8.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.8.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.8.2.3.2.2
Subtrahiere von .
Schritt 2.8.2.4
Berechne .
Schritt 2.8.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.8.2.4.2
Vereinfache die Determinante.
Schritt 2.8.2.4.2.1
Vereinfache jeden Term.
Schritt 2.8.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.8.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.8.2.4.2.2
Subtrahiere von .
Schritt 2.8.2.5
Vereinfache die Determinante.
Schritt 2.8.2.5.1
Vereinfache jeden Term.
Schritt 2.8.2.5.1.1
Mutltipliziere mit .
Schritt 2.8.2.5.1.2
Mutltipliziere mit .
Schritt 2.8.2.5.1.3
Mutltipliziere mit .
Schritt 2.8.2.5.2
Addiere und .
Schritt 2.8.2.5.3
Addiere und .
Schritt 2.9
Calculate the minor for element .
Schritt 2.9.1
The minor for is the determinant with row and column deleted.
Schritt 2.9.2
Evaluate the determinant.
Schritt 2.9.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.9.2.1.1
Consider the corresponding sign chart.
Schritt 2.9.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.9.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.9.2.1.4
Multiply element by its cofactor.
Schritt 2.9.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.9.2.1.6
Multiply element by its cofactor.
Schritt 2.9.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.9.2.1.8
Multiply element by its cofactor.
Schritt 2.9.2.1.9
Add the terms together.
Schritt 2.9.2.2
Berechne .
Schritt 2.9.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.9.2.2.2
Vereinfache die Determinante.
Schritt 2.9.2.2.2.1
Vereinfache jeden Term.
Schritt 2.9.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.9.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.9.2.2.2.2
Subtrahiere von .
Schritt 2.9.2.3
Berechne .
Schritt 2.9.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.9.2.3.2
Vereinfache die Determinante.
Schritt 2.9.2.3.2.1
Vereinfache jeden Term.
Schritt 2.9.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.9.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.9.2.3.2.2
Subtrahiere von .
Schritt 2.9.2.4
Berechne .
Schritt 2.9.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.9.2.4.2
Vereinfache die Determinante.
Schritt 2.9.2.4.2.1
Vereinfache jeden Term.
Schritt 2.9.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.9.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.9.2.4.2.2
Subtrahiere von .
Schritt 2.9.2.5
Vereinfache die Determinante.
Schritt 2.9.2.5.1
Vereinfache jeden Term.
Schritt 2.9.2.5.1.1
Mutltipliziere mit .
Schritt 2.9.2.5.1.2
Mutltipliziere mit .
Schritt 2.9.2.5.1.3
Mutltipliziere mit .
Schritt 2.9.2.5.2
Addiere und .
Schritt 2.9.2.5.3
Addiere und .
Schritt 2.10
Calculate the minor for element .
Schritt 2.10.1
The minor for is the determinant with row and column deleted.
Schritt 2.10.2
Evaluate the determinant.
Schritt 2.10.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.10.2.1.1
Consider the corresponding sign chart.
Schritt 2.10.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.10.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.10.2.1.4
Multiply element by its cofactor.
Schritt 2.10.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.10.2.1.6
Multiply element by its cofactor.
Schritt 2.10.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.10.2.1.8
Multiply element by its cofactor.
Schritt 2.10.2.1.9
Add the terms together.
Schritt 2.10.2.2
Berechne .
Schritt 2.10.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.10.2.2.2
Vereinfache die Determinante.
Schritt 2.10.2.2.2.1
Vereinfache jeden Term.
Schritt 2.10.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.10.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.10.2.2.2.2
Subtrahiere von .
Schritt 2.10.2.3
Berechne .
Schritt 2.10.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.10.2.3.2
Vereinfache die Determinante.
Schritt 2.10.2.3.2.1
Vereinfache jeden Term.
Schritt 2.10.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.10.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.10.2.3.2.2
Subtrahiere von .
Schritt 2.10.2.4
Berechne .
Schritt 2.10.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.10.2.4.2
Vereinfache die Determinante.
Schritt 2.10.2.4.2.1
Vereinfache jeden Term.
Schritt 2.10.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.10.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.10.2.4.2.2
Subtrahiere von .
Schritt 2.10.2.5
Vereinfache die Determinante.
Schritt 2.10.2.5.1
Vereinfache jeden Term.
Schritt 2.10.2.5.1.1
Mutltipliziere mit .
Schritt 2.10.2.5.1.2
Mutltipliziere mit .
Schritt 2.10.2.5.1.3
Mutltipliziere mit .
Schritt 2.10.2.5.2
Addiere und .
Schritt 2.10.2.5.3
Addiere und .
Schritt 2.11
Calculate the minor for element .
Schritt 2.11.1
The minor for is the determinant with row and column deleted.
Schritt 2.11.2
Evaluate the determinant.
Schritt 2.11.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.11.2.1.1
Consider the corresponding sign chart.
Schritt 2.11.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.11.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.11.2.1.4
Multiply element by its cofactor.
Schritt 2.11.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.11.2.1.6
Multiply element by its cofactor.
Schritt 2.11.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.11.2.1.8
Multiply element by its cofactor.
Schritt 2.11.2.1.9
Add the terms together.
Schritt 2.11.2.2
Berechne .
Schritt 2.11.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.11.2.2.2
Vereinfache die Determinante.
Schritt 2.11.2.2.2.1
Vereinfache jeden Term.
Schritt 2.11.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.11.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.11.2.2.2.2
Subtrahiere von .
Schritt 2.11.2.3
Berechne .
Schritt 2.11.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.11.2.3.2
Vereinfache die Determinante.
Schritt 2.11.2.3.2.1
Vereinfache jeden Term.
Schritt 2.11.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.11.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.11.2.3.2.2
Subtrahiere von .
Schritt 2.11.2.4
Berechne .
Schritt 2.11.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.11.2.4.2
Vereinfache die Determinante.
Schritt 2.11.2.4.2.1
Vereinfache jeden Term.
Schritt 2.11.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.11.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.11.2.4.2.2
Subtrahiere von .
Schritt 2.11.2.5
Vereinfache die Determinante.
Schritt 2.11.2.5.1
Vereinfache jeden Term.
Schritt 2.11.2.5.1.1
Mutltipliziere mit .
Schritt 2.11.2.5.1.2
Mutltipliziere mit .
Schritt 2.11.2.5.1.3
Mutltipliziere mit .
Schritt 2.11.2.5.2
Addiere und .
Schritt 2.11.2.5.3
Addiere und .
Schritt 2.12
Calculate the minor for element .
Schritt 2.12.1
The minor for is the determinant with row and column deleted.
Schritt 2.12.2
Evaluate the determinant.
Schritt 2.12.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.12.2.1.1
Consider the corresponding sign chart.
Schritt 2.12.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.12.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.12.2.1.4
Multiply element by its cofactor.
Schritt 2.12.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.12.2.1.6
Multiply element by its cofactor.
Schritt 2.12.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.12.2.1.8
Multiply element by its cofactor.
Schritt 2.12.2.1.9
Add the terms together.
Schritt 2.12.2.2
Berechne .
Schritt 2.12.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.12.2.2.2
Vereinfache die Determinante.
Schritt 2.12.2.2.2.1
Vereinfache jeden Term.
Schritt 2.12.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.12.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.12.2.2.2.2
Subtrahiere von .
Schritt 2.12.2.3
Berechne .
Schritt 2.12.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.12.2.3.2
Vereinfache die Determinante.
Schritt 2.12.2.3.2.1
Vereinfache jeden Term.
Schritt 2.12.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.12.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.12.2.3.2.2
Subtrahiere von .
Schritt 2.12.2.4
Berechne .
Schritt 2.12.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.12.2.4.2
Vereinfache die Determinante.
Schritt 2.12.2.4.2.1
Vereinfache jeden Term.
Schritt 2.12.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.12.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.12.2.4.2.2
Subtrahiere von .
Schritt 2.12.2.5
Vereinfache die Determinante.
Schritt 2.12.2.5.1
Vereinfache jeden Term.
Schritt 2.12.2.5.1.1
Mutltipliziere mit .
Schritt 2.12.2.5.1.2
Mutltipliziere mit .
Schritt 2.12.2.5.1.3
Mutltipliziere mit .
Schritt 2.12.2.5.2
Addiere und .
Schritt 2.12.2.5.3
Addiere und .
Schritt 2.13
Calculate the minor for element .
Schritt 2.13.1
The minor for is the determinant with row and column deleted.
Schritt 2.13.2
Evaluate the determinant.
Schritt 2.13.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.13.2.1.1
Consider the corresponding sign chart.
Schritt 2.13.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.13.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.13.2.1.4
Multiply element by its cofactor.
Schritt 2.13.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.13.2.1.6
Multiply element by its cofactor.
Schritt 2.13.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.13.2.1.8
Multiply element by its cofactor.
Schritt 2.13.2.1.9
Add the terms together.
Schritt 2.13.2.2
Berechne .
Schritt 2.13.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.13.2.2.2
Vereinfache die Determinante.
Schritt 2.13.2.2.2.1
Vereinfache jeden Term.
Schritt 2.13.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.13.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.13.2.2.2.2
Subtrahiere von .
Schritt 2.13.2.3
Berechne .
Schritt 2.13.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.13.2.3.2
Vereinfache die Determinante.
Schritt 2.13.2.3.2.1
Vereinfache jeden Term.
Schritt 2.13.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.13.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.13.2.3.2.2
Subtrahiere von .
Schritt 2.13.2.4
Berechne .
Schritt 2.13.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.13.2.4.2
Vereinfache die Determinante.
Schritt 2.13.2.4.2.1
Vereinfache jeden Term.
Schritt 2.13.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.13.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.13.2.4.2.2
Subtrahiere von .
Schritt 2.13.2.5
Vereinfache die Determinante.
Schritt 2.13.2.5.1
Vereinfache jeden Term.
Schritt 2.13.2.5.1.1
Mutltipliziere mit .
Schritt 2.13.2.5.1.2
Mutltipliziere mit .
Schritt 2.13.2.5.1.3
Mutltipliziere mit .
Schritt 2.13.2.5.2
Addiere und .
Schritt 2.13.2.5.3
Addiere und .
Schritt 2.14
Calculate the minor for element .
Schritt 2.14.1
The minor for is the determinant with row and column deleted.
Schritt 2.14.2
Evaluate the determinant.
Schritt 2.14.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.14.2.1.1
Consider the corresponding sign chart.
Schritt 2.14.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.14.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.14.2.1.4
Multiply element by its cofactor.
Schritt 2.14.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.14.2.1.6
Multiply element by its cofactor.
Schritt 2.14.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.14.2.1.8
Multiply element by its cofactor.
Schritt 2.14.2.1.9
Add the terms together.
Schritt 2.14.2.2
Berechne .
Schritt 2.14.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.14.2.2.2
Vereinfache die Determinante.
Schritt 2.14.2.2.2.1
Vereinfache jeden Term.
Schritt 2.14.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.14.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.14.2.2.2.2
Subtrahiere von .
Schritt 2.14.2.3
Berechne .
Schritt 2.14.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.14.2.3.2
Vereinfache die Determinante.
Schritt 2.14.2.3.2.1
Vereinfache jeden Term.
Schritt 2.14.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.14.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.14.2.3.2.2
Subtrahiere von .
Schritt 2.14.2.4
Berechne .
Schritt 2.14.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.14.2.4.2
Vereinfache die Determinante.
Schritt 2.14.2.4.2.1
Vereinfache jeden Term.
Schritt 2.14.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.14.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.14.2.4.2.2
Subtrahiere von .
Schritt 2.14.2.5
Vereinfache die Determinante.
Schritt 2.14.2.5.1
Vereinfache jeden Term.
Schritt 2.14.2.5.1.1
Mutltipliziere mit .
Schritt 2.14.2.5.1.2
Mutltipliziere mit .
Schritt 2.14.2.5.1.3
Mutltipliziere mit .
Schritt 2.14.2.5.2
Addiere und .
Schritt 2.14.2.5.3
Addiere und .
Schritt 2.15
Calculate the minor for element .
Schritt 2.15.1
The minor for is the determinant with row and column deleted.
Schritt 2.15.2
Evaluate the determinant.
Schritt 2.15.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.15.2.1.1
Consider the corresponding sign chart.
Schritt 2.15.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.15.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.15.2.1.4
Multiply element by its cofactor.
Schritt 2.15.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.15.2.1.6
Multiply element by its cofactor.
Schritt 2.15.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.15.2.1.8
Multiply element by its cofactor.
Schritt 2.15.2.1.9
Add the terms together.
Schritt 2.15.2.2
Berechne .
Schritt 2.15.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.15.2.2.2
Vereinfache die Determinante.
Schritt 2.15.2.2.2.1
Vereinfache jeden Term.
Schritt 2.15.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.15.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.15.2.2.2.2
Subtrahiere von .
Schritt 2.15.2.3
Berechne .
Schritt 2.15.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.15.2.3.2
Vereinfache die Determinante.
Schritt 2.15.2.3.2.1
Vereinfache jeden Term.
Schritt 2.15.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.15.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.15.2.3.2.2
Subtrahiere von .
Schritt 2.15.2.4
Berechne .
Schritt 2.15.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.15.2.4.2
Vereinfache die Determinante.
Schritt 2.15.2.4.2.1
Vereinfache jeden Term.
Schritt 2.15.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.15.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.15.2.4.2.2
Subtrahiere von .
Schritt 2.15.2.5
Vereinfache die Determinante.
Schritt 2.15.2.5.1
Vereinfache jeden Term.
Schritt 2.15.2.5.1.1
Mutltipliziere mit .
Schritt 2.15.2.5.1.2
Mutltipliziere mit .
Schritt 2.15.2.5.1.3
Mutltipliziere mit .
Schritt 2.15.2.5.2
Addiere und .
Schritt 2.15.2.5.3
Addiere und .
Schritt 2.16
Calculate the minor for element .
Schritt 2.16.1
The minor for is the determinant with row and column deleted.
Schritt 2.16.2
Evaluate the determinant.
Schritt 2.16.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 2.16.2.1.1
Consider the corresponding sign chart.
Schritt 2.16.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 2.16.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 2.16.2.1.4
Multiply element by its cofactor.
Schritt 2.16.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 2.16.2.1.6
Multiply element by its cofactor.
Schritt 2.16.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 2.16.2.1.8
Multiply element by its cofactor.
Schritt 2.16.2.1.9
Add the terms together.
Schritt 2.16.2.2
Berechne .
Schritt 2.16.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.16.2.2.2
Vereinfache die Determinante.
Schritt 2.16.2.2.2.1
Vereinfache jeden Term.
Schritt 2.16.2.2.2.1.1
Mutltipliziere mit .
Schritt 2.16.2.2.2.1.2
Mutltipliziere mit .
Schritt 2.16.2.2.2.2
Subtrahiere von .
Schritt 2.16.2.3
Berechne .
Schritt 2.16.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.16.2.3.2
Vereinfache die Determinante.
Schritt 2.16.2.3.2.1
Vereinfache jeden Term.
Schritt 2.16.2.3.2.1.1
Mutltipliziere mit .
Schritt 2.16.2.3.2.1.2
Mutltipliziere mit .
Schritt 2.16.2.3.2.2
Subtrahiere von .
Schritt 2.16.2.4
Berechne .
Schritt 2.16.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.16.2.4.2
Vereinfache die Determinante.
Schritt 2.16.2.4.2.1
Vereinfache jeden Term.
Schritt 2.16.2.4.2.1.1
Mutltipliziere mit .
Schritt 2.16.2.4.2.1.2
Mutltipliziere mit .
Schritt 2.16.2.4.2.2
Subtrahiere von .
Schritt 2.16.2.5
Vereinfache die Determinante.
Schritt 2.16.2.5.1
Vereinfache jeden Term.
Schritt 2.16.2.5.1.1
Mutltipliziere mit .
Schritt 2.16.2.5.1.2
Mutltipliziere mit .
Schritt 2.16.2.5.1.3
Mutltipliziere mit .
Schritt 2.16.2.5.2
Addiere und .
Schritt 2.16.2.5.3
Addiere und .
Schritt 2.17
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the positions on the sign chart.