Finite Mathematik Beispiele

Löse durch Substitution 3x+2y-1z=2 , 2x-3y+1z=-2 , 1x-1y-z=-4
, ,
Schritt 1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.2.3
Mutltipliziere mit .
Schritt 2.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Addiere und .
Schritt 2.2.1.2.2
Subtrahiere von .
Schritt 2.3
Ersetze alle in durch .
Schritt 2.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1
Schreibe als um.
Schritt 2.4.1.1.2
Wende das Distributivgesetz an.
Schritt 2.4.1.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.3.1
Mutltipliziere mit .
Schritt 2.4.1.1.3.2
Mutltipliziere mit .
Schritt 2.4.1.1.3.3
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.2.1
Addiere und .
Schritt 2.4.1.2.2
Subtrahiere von .
Schritt 3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.3
Subtrahiere von .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Dividiere durch .
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.2.1
Kombiniere und .
Schritt 4.2.1.1.2.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.1.3
Kombiniere und .
Schritt 4.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.5
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.5.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.1.5.2
Mutltipliziere mit .
Schritt 4.2.1.5.3
Mutltipliziere mit .
Schritt 4.2.1.5.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.1.5.5
Mutltipliziere mit .
Schritt 4.2.1.5.6
Mutltipliziere mit .
Schritt 4.2.1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.7
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.7.1
Mutltipliziere mit .
Schritt 4.2.1.7.2
Mutltipliziere mit .
Schritt 4.2.1.7.3
Mutltipliziere mit .
Schritt 4.2.1.8
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.8.1
Subtrahiere von .
Schritt 4.2.1.8.2
Addiere und .
Schritt 4.3
Ersetze alle in durch .
Schritt 4.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1.1
Wende das Distributivgesetz an.
Schritt 4.4.1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1.2.1
Kombiniere und .
Schritt 4.4.1.1.2.2
Mutltipliziere mit .
Schritt 4.4.1.1.3
Mutltipliziere mit .
Schritt 4.4.1.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4.1.2
Addiere und .
Schritt 4.4.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.1.4
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.4.1
Kombiniere und .
Schritt 4.4.1.4.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.1.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.5.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.5.1.1.1
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.1.2
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.1.3
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.2
Mutltipliziere mit .
Schritt 4.4.1.5.1.3
Addiere und .
Schritt 4.4.1.5.2
Mutltipliziere mit .
Schritt 5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Multipliziere beide Seiten mit .
Schritt 5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Mutltipliziere mit .
Schritt 5.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.3.1.2
Addiere und .
Schritt 5.3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.2.1.2
Dividiere durch .
Schritt 6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 6.2.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.2.3
Forme den Ausdruck um.
Schritt 6.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.1.3
Kombiniere und .
Schritt 6.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.5.1
Mutltipliziere mit .
Schritt 6.2.1.5.2
Addiere und .
Schritt 6.3
Ersetze alle in durch .
Schritt 6.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1.1
Kombiniere und .
Schritt 6.4.1.1.2
Mutltipliziere mit .
Schritt 6.4.1.1.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.4.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1.4.1
Faktorisiere aus heraus.
Schritt 6.4.1.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.1.1.4.3
Forme den Ausdruck um.
Schritt 6.4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.4.1.3
Kombiniere und .
Schritt 6.4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.4.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.5.1
Mutltipliziere mit .
Schritt 6.4.1.5.2
Subtrahiere von .
Schritt 7
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform: