Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
, ,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Subtrahiere von .
Schritt 2.2.1.2
Subtrahiere von .
Schritt 2.3
Ersetze alle in durch .
Schritt 2.4
Vereinfache die linke Seite.
Schritt 2.4.1
Vereinfache .
Schritt 2.4.1.1
Vereinfache jeden Term.
Schritt 2.4.1.1.1
Wende das Distributivgesetz an.
Schritt 2.4.1.1.2
Vereinfache.
Schritt 2.4.1.1.2.1
Mutltipliziere mit .
Schritt 2.4.1.1.2.2
Mutltipliziere mit .
Schritt 2.4.1.1.2.3
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.4.1.2.1
Subtrahiere von .
Schritt 2.4.1.2.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.3
Subtrahiere von .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Vereinfache jeden Term.
Schritt 3.2.3.1.1
Dividiere durch .
Schritt 3.2.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.1.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.2.1.1.3.2
Faktorisiere aus heraus.
Schritt 4.2.1.1.3.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.3.4
Forme den Ausdruck um.
Schritt 4.2.1.1.4
Mutltipliziere mit .
Schritt 4.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 4.2.1.2.1
Subtrahiere von .
Schritt 4.2.1.2.2
Addiere und .
Schritt 4.2.1.2.3
Subtrahiere von .
Schritt 4.3
Ersetze alle in durch .
Schritt 4.4
Vereinfache die rechte Seite.
Schritt 4.4.1
Vereinfache .
Schritt 4.4.1.1
Vereinfache jeden Term.
Schritt 4.4.1.1.1
Wende das Distributivgesetz an.
Schritt 4.4.1.1.2
Mutltipliziere mit .
Schritt 4.4.1.1.3
Multipliziere .
Schritt 4.4.1.1.3.1
Mutltipliziere mit .
Schritt 4.4.1.1.3.2
Mutltipliziere mit .
Schritt 4.4.1.2
Subtrahiere von .
Schritt 4.4.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.1.4
Vereinfache Terme.
Schritt 4.4.1.4.1
Kombiniere und .
Schritt 4.4.1.4.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.1.5
Vereinfache jeden Term.
Schritt 4.4.1.5.1
Vereinfache den Zähler.
Schritt 4.4.1.5.1.1
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.1.1
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.1.2
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.1.3
Faktorisiere aus heraus.
Schritt 4.4.1.5.1.2
Mutltipliziere mit .
Schritt 4.4.1.5.1.3
Subtrahiere von .
Schritt 4.4.1.5.2
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Dividiere durch .
Schritt 6
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Schritt 6.2.1
Vereinfache .
Schritt 6.2.1.1
Dividiere durch .
Schritt 6.2.1.2
Addiere und .
Schritt 6.3
Ersetze alle in durch .
Schritt 6.4
Vereinfache die rechte Seite.
Schritt 6.4.1
Vereinfache .
Schritt 6.4.1.1
Vereinfache jeden Term.
Schritt 6.4.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 6.4.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.1.1.1.2
Dividiere durch .
Schritt 6.4.1.1.2
Mutltipliziere mit .
Schritt 6.4.1.2
Subtrahiere von .
Schritt 7
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform: