Finite Mathematik Beispiele

Bestimme den Erwartungswert table[[x,P(x)],[1,1/36],[2,2/36],[3,3/36],[4,4/36],[5,5/36]]
Schritt 1
Beweise, dass die gegebene Tabelle die zwei Eigenschaften erfüllt, die für eine Wahrscheinlichkeitsverteilung benötigt werden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Eine diskrete Zufallsvariable nimmt eine Menge separater Werte (wie , , ...) an. Ihre Wahrscheinlichkeitsverteilung weist jedem möglichen Wert eine Wahrscheinlichkeit zu. Für jedes nimmt die Wahrscheinlichkeit einen Wert im abgeschlossenen Intervall mit den Grenzen und an und die Summe der Wahrscheinlichkeiten für alle möglichen ist gleich .
1. Für alle , .
2. .
Schritt 1.2
liegt im abgeschlossenen Intervall mit den Grenzen und , was die erste Bedingung der Wahrscheinlichkeitsverteilung erfüllt.
liegt im abgeschlossenen Intervall mit den Grenzen und
Schritt 1.3
liegt im abgeschlossenen Intervall mit den Grenzen und , was die erste Bedingung der Wahrscheinlichkeitsverteilung erfüllt.
liegt im abgeschlossenen Intervall mit den Grenzen und
Schritt 1.4
liegt im abgeschlossenen Intervall mit den Grenzen und , was die erste Bedingung der Wahrscheinlichkeitsverteilung erfüllt.
liegt im abgeschlossenen Intervall mit den Grenzen und
Schritt 1.5
liegt im abgeschlossenen Intervall mit den Grenzen und , was die erste Bedingung der Wahrscheinlichkeitsverteilung erfüllt.
liegt im abgeschlossenen Intervall mit den Grenzen und
Schritt 1.6
liegt im abgeschlossenen Intervall mit den Grenzen und , was die erste Bedingung der Wahrscheinlichkeitsverteilung erfüllt.
liegt im abgeschlossenen Intervall mit den Grenzen und
Schritt 1.7
Für jedes fällt die Wahrscheinlichkeit zwischen und einschließlich, womit das erste Merkmal der Wahrscheinlichkeitsverteilung gegeben ist.
für alle x-Werte
Schritt 1.8
Berechne die Summe aller Wahrscheinlichkeitswerte für alle möglichen -Werte.
Schritt 1.9
Die Summe der Wahrscheinlichkeiten für alle möglichen -Werte ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.9.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.2.1
Addiere und .
Schritt 1.9.2.2
Addiere und .
Schritt 1.9.2.3
Addiere und .
Schritt 1.9.2.4
Addiere und .
Schritt 1.9.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.3.1
Faktorisiere aus heraus.
Schritt 1.9.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.3.2.1
Faktorisiere aus heraus.
Schritt 1.9.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.9.3.2.3
Forme den Ausdruck um.
Schritt 1.10
Die Summe der Wahrscheinlichkeiten für alle möglichen -Werte ist nicht gleich , was der zweiten Eigenschaft der Wahrscheinlichkeitsverteilung widerspricht.
Schritt 1.11
Für jedes fällt die Wahrscheinlichkeit zwischen und einschließlich. Allerdings ist die Summe der Wahrscheinlichkeiten für alle möglichen -Werte nicht gleich , was bedeutet, dass die Tabelle nicht die beiden Merkmale einer Wahrscheinlichkeitsverteilung zeigt.
Die Tabelle erfüllt nicht die beiden Merkmale einer Wahrscheinlichkeitsverteilung
Die Tabelle erfüllt nicht die beiden Merkmale einer Wahrscheinlichkeitsverteilung
Schritt 2
Die Tabelle erfüllt nicht die beiden Merkmale einer Wahrscheinlichkeitsverteilung, was bedeutet, dass der Erwartungswert unter Anwendung der gegebenen Tabelle nicht gefunden werden kann.
Kann den Erwartungswert nicht bestimmen