Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
xy15210430860970xy15210430860970
Schritt 1
Der lineare Korrelationskoeffizient ist ein Maß für die Beziehung zwischen den Wertepaaren einer Stichprobe.
r=n(∑xy)-∑x∑y√n(∑x2)-(∑x)2⋅√n(∑y2)-(∑y)2r=n(∑xy)−∑x∑y√n(∑x2)−(∑x)2⋅√n(∑y2)−(∑y)2
Schritt 2
Vereinfache die xx Werte.
∑x=1+2+4+8+9∑x=1+2+4+8+9
Schritt 3
Vereinfache den Ausdruck.
∑x=24∑x=24
Schritt 4
Vereinfache die yy Werte.
∑y=5+10+30+60+70∑y=5+10+30+60+70
Schritt 5
Vereinfache den Ausdruck.
∑y=175∑y=175
Schritt 6
Summiere die Werte von x⋅yx⋅y auf.
∑xy=1⋅5+2⋅10+4⋅30+8⋅60+9⋅70∑xy=1⋅5+2⋅10+4⋅30+8⋅60+9⋅70
Schritt 7
Vereinfache den Ausdruck.
∑xy=1255∑xy=1255
Schritt 8
Summiere die Werte von x2x2 auf.
∑x2=(1)2+(2)2+(4)2+(8)2+(9)2∑x2=(1)2+(2)2+(4)2+(8)2+(9)2
Schritt 9
Vereinfache den Ausdruck.
∑x2=166∑x2=166
Schritt 10
Summiere die Werte von y2y2 auf.
∑y2=(5)2+(10)2+(30)2+(60)2+(70)2∑y2=(5)2+(10)2+(30)2+(60)2+(70)2
Schritt 11
Vereinfache den Ausdruck.
∑y2=9525∑y2=9525
Schritt 12
Trage die berechneten Werte ein.
r=5(1255)-24⋅175√5(166)-(24)2⋅√5(9525)-(175)2r=5(1255)−24⋅175√5(166)−(24)2⋅√5(9525)−(175)2
Schritt 13
Vereinfache den Ausdruck.
r=0.99856601r=0.99856601