Finite Mathematik Beispiele

Beweise, dass im Intervall eine Nullstelle ist (-10,8) , 7x-5y=2
,
Schritt 1
Löse die Gleichung nach , ausgedrückt mittels , auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2
Der Zwischenwertsatz besagt, dass, wenn eine reellwertige, stetige Funktion im Intervall ist und eine Zahl zwischen und ist, dann ist ein im Intervall enthalten, sodass .
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Subtrahiere von .
Schritt 4.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Addiere und .
Schritt 6
Da sich im Intervall befindet, löse die Gleichung an der Wurzel nach auf, indem du in gleich setzt.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.3
Da der Ausdruck auf jeder Seite der Gleichung den gleichen Nenner hat, müssen die Zähler gleich sein.
Schritt 6.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Teile jeden Ausdruck in durch .
Schritt 6.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.2
Dividiere durch .
Schritt 7
Der Zwischenwertsatz besagt, dass es eine Wurzel im Intervall gibt, weil eine im Intervall stetige Funktion ist.
Die Wurzeln im Intervall befinden sich bei .
Schritt 8