Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Potenziere mit .
Schritt 1.2
Addiere und .
Schritt 2
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 3
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 4
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 5
Schritt 5.1
Vereinfache jeden Term.
Schritt 5.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.1.1.2
Faktorisiere aus heraus.
Schritt 5.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.4
Forme den Ausdruck um.
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.2
Addiere und .
Schritt 6
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 7
Schritt 7.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
Schritt 7.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
Schritt 7.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 7.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 7.5
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 8
Da , gibt es keine Lösungen.
Keine Lösung
Schritt 9
Das Polynom kann als ein Satz Linearfaktoren geschrieben werden.
Schritt 10
Das sind die Wurzeln des Polynoms .
Schritt 11