Analysis Beispiele

Bestimme das Integral x^2sin(2x)
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Kombiniere und .
Schritt 4.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.3
Forme den Ausdruck um.
Schritt 4.3.2.4
Dividiere durch .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Mutltipliziere mit .
Schritt 11.2
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Schreibe als um.
Schritt 14
Ersetze alle durch .
Schritt 15
Stelle die Terme um.