Analysis Beispiele

Berechne das Integral Integral über ye^(xy) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Mutltipliziere mit .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2
Forme den Ausdruck um.
Schritt 5.3
Mutltipliziere mit .
Schritt 6
Das Integral von nach ist .
Schritt 7
Ersetze alle durch .