Analysis Beispiele

Berechne den Grenzwert Grenzwert von (1-tan(x))/(sin(x)-cos(x)), wenn x gegen pi/4 geht
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.1.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.1
Der genau Wert von ist .
Schritt 1.1.2.3.1.2
Mutltipliziere mit .
Schritt 1.1.2.3.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.1.3.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.1.3.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.5.1.1
Der genau Wert von ist .
Schritt 1.1.3.5.1.2
Der genau Wert von ist .
Schritt 1.1.3.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.3.5.3
Subtrahiere von .
Schritt 1.1.3.5.4
Dividiere durch .
Schritt 1.1.3.5.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.6
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Die Ableitung von nach ist .
Schritt 1.3.5
Subtrahiere von .
Schritt 1.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.7
Die Ableitung von nach ist .
Schritt 1.3.8
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.8.2
Die Ableitung von nach ist .
Schritt 1.3.8.3
Mutltipliziere mit .
Schritt 1.3.8.4
Mutltipliziere mit .
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.4
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 2.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.6
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.7
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Der genau Wert von ist .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Mutltipliziere mit .
Schritt 4.1.3.2
Potenziere mit .
Schritt 4.1.3.3
Potenziere mit .
Schritt 4.1.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3.5
Addiere und .
Schritt 4.1.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.6.1
Benutze , um als neu zu schreiben.
Schritt 4.1.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.3.6.3
Kombiniere und .
Schritt 4.1.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.3.6.4.2
Forme den Ausdruck um.
Schritt 4.1.3.6.5
Berechne den Exponenten.
Schritt 4.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.4.2
Dividiere durch .
Schritt 4.1.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.1
Benutze , um als neu zu schreiben.
Schritt 4.1.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.5.3
Kombiniere und .
Schritt 4.1.5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.5.4.2
Forme den Ausdruck um.
Schritt 4.1.5.5
Berechne den Exponenten.
Schritt 4.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Der genau Wert von ist .
Schritt 4.2.2
Der genau Wert von ist .
Schritt 4.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.4
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Addiere und .
Schritt 4.2.4.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.2.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2.1.2
Forme den Ausdruck um.
Schritt 4.2.4.2.2
Dividiere durch .
Schritt 4.3
Mutltipliziere mit .
Schritt 4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.5
Mutltipliziere mit .
Schritt 4.6
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Mutltipliziere mit .
Schritt 4.6.2
Potenziere mit .
Schritt 4.6.3
Potenziere mit .
Schritt 4.6.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.6.5
Addiere und .
Schritt 4.6.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.6.1
Benutze , um als neu zu schreiben.
Schritt 4.6.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.6.6.3
Kombiniere und .
Schritt 4.6.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.6.6.4.2
Forme den Ausdruck um.
Schritt 4.6.6.5
Berechne den Exponenten.
Schritt 4.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.1
Kürze den gemeinsamen Faktor.
Schritt 4.7.2
Dividiere durch .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: