Analysis Beispiele

Berechne das Integral Integral von 0 bis 1 über 9x(x^2-1)^9 nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.5
Addiere und .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.3.2
Subtrahiere von .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.5.2
Subtrahiere von .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Kombiniere und .
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Berechne bei und .
Schritt 7.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.2
Mutltipliziere mit .
Schritt 7.2.3
Potenziere mit .
Schritt 7.2.4
Mutltipliziere mit .
Schritt 7.2.5
Subtrahiere von .
Schritt 7.2.6
Mutltipliziere mit .
Schritt 7.2.7
Mutltipliziere mit .
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 9