Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.3
Multipliziere die Exponenten in .
Schritt 2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Schritt 4.1
Berechne bei und .
Schritt 4.2
Vereinfache.
Schritt 4.2.1
Schreibe als um.
Schritt 4.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.3
Kürze den gemeinsamen Faktor von .
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.2
Forme den Ausdruck um.
Schritt 4.2.4
Berechne den Exponenten.
Schritt 4.2.5
Mutltipliziere mit .
Schritt 4.2.6
Schreibe als um.
Schritt 4.2.7
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.8
Kürze den gemeinsamen Faktor von .
Schritt 4.2.8.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.8.2
Forme den Ausdruck um.
Schritt 4.2.9
Berechne den Exponenten.
Schritt 4.2.10
Mutltipliziere mit .
Schritt 4.2.11
Addiere und .
Schritt 4.2.12
Mutltipliziere mit .
Schritt 5