Analysis Beispiele

Berechne das Integral Integral von 0 bis 3 über 8x^3e^(x^4) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Potenziere mit .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Benutze , um als neu zu schreiben.
Schritt 3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.3
Kombiniere und .
Schritt 3.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.4.2.1
Faktorisiere aus heraus.
Schritt 3.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.4.2.3
Forme den Ausdruck um.
Schritt 3.1.4.2.4
Dividiere durch .
Schritt 3.2
Kombiniere und .
Schritt 3.3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.4
Dividiere durch .
Schritt 6
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.2
Setze die untere Grenze für in ein.
Schritt 6.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.4
Setze die obere Grenze für in ein.
Schritt 6.5
Potenziere mit .
Schritt 6.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 6.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kombiniere und .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 9.2.2.4
Dividiere durch .
Schritt 10
Das Integral von nach ist .
Schritt 11
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Berechne bei und .
Schritt 11.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Alles, was mit potenziert wird, ist .
Schritt 11.2.2
Mutltipliziere mit .
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Wende das Distributivgesetz an.
Schritt 12.2
Mutltipliziere mit .
Schritt 13
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 14