Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3
Berechne .
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.4.2
Addiere und .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Addiere und .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Mutltipliziere mit .
Schritt 2.5.2
Addiere und .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.4
Dividiere durch .
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Kombiniere und .
Schritt 8
Schritt 8.1
Berechne bei und .
Schritt 8.2
Vereinfache.
Schritt 8.2.1
Potenziere mit .
Schritt 8.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.2.4
Subtrahiere von .
Schritt 8.2.5
Kürze den gemeinsamen Teiler von und .
Schritt 8.2.5.1
Faktorisiere aus heraus.
Schritt 8.2.5.2
Kürze die gemeinsamen Faktoren.
Schritt 8.2.5.2.1
Faktorisiere aus heraus.
Schritt 8.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.5.2.3
Forme den Ausdruck um.
Schritt 8.2.5.2.4
Dividiere durch .
Schritt 8.2.6
Mutltipliziere mit .
Schritt 9