Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Mutltipliziere mit .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Mutltipliziere mit .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.6
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2
Forme den Ausdruck um.
Schritt 5.3
Mutltipliziere mit .
Schritt 6
Das Integral von nach ist .
Schritt 7
Berechne bei und .
Schritt 8
Schritt 8.1
Der genau Wert von ist .
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Addiere und .
Schritt 9
Schritt 9.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 9.2
Der genau Wert von ist .