Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5
Addiere und .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Potenziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Potenziere mit .
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Kombiniere und .
Schritt 5
Schritt 5.1
Berechne bei und .
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Potenziere mit .
Schritt 5.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.2.4
Dividiere durch .
Schritt 5.2.3
Potenziere mit .
Schritt 5.2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.5
Kombiniere und .
Schritt 5.2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.7
Vereinfache den Zähler.
Schritt 5.2.7.1
Mutltipliziere mit .
Schritt 5.2.7.2
Subtrahiere von .
Schritt 5.2.8
Kombiniere und .
Schritt 5.2.9
Mutltipliziere mit .
Schritt 5.2.10
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.10.1
Faktorisiere aus heraus.
Schritt 5.2.10.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.10.2.1
Faktorisiere aus heraus.
Schritt 5.2.10.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.10.2.3
Forme den Ausdruck um.
Schritt 5.2.10.2.4
Dividiere durch .
Schritt 6