Analysis Beispiele

dy/dx 구하기 4xcos(y)+7sin(2y)=5sin(y)
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Die Ableitung von nach ist .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Schreibe als um.
Schritt 2.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.6
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Die Ableitung von nach ist .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Schreibe als um.
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.4.3
Stelle die Terme um.
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Schreibe als um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende die Doppelwinkelfunktion an, um nach zu transformieren.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1.1
Wende das Distributivgesetz an.
Schritt 5.4.1.1.2
Mutltipliziere mit .
Schritt 5.4.1.1.3
Mutltipliziere mit .
Schritt 5.4.1.1.4
Wende das Distributivgesetz an.
Schritt 5.4.1.2
Stelle die Faktoren in um.
Schritt 5.5
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.1
Faktorisiere aus heraus.
Schritt 5.5.1.2
Faktorisiere aus heraus.
Schritt 5.5.1.3
Faktorisiere aus heraus.
Schritt 5.5.1.4
Faktorisiere aus heraus.
Schritt 5.5.1.5
Faktorisiere aus heraus.
Schritt 5.5.1.6
Faktorisiere aus heraus.
Schritt 5.5.1.7
Faktorisiere aus heraus.
Schritt 5.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.2.1.2
Dividiere durch .
Schritt 5.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.5.2.3.2
Faktorisiere aus heraus.
Schritt 5.5.2.3.3
Schreibe als um.
Schritt 5.5.2.3.4
Faktorisiere aus heraus.
Schritt 5.5.2.3.5
Faktorisiere aus heraus.
Schritt 5.5.2.3.6
Faktorisiere aus heraus.
Schritt 5.5.2.3.7
Faktorisiere aus heraus.
Schritt 5.5.2.3.8
Faktorisiere aus heraus.
Schritt 5.5.2.3.9
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.3.9.1
Schreibe als um.
Schritt 5.5.2.3.9.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.5.2.3.9.3
Mutltipliziere mit .
Schritt 5.5.2.3.9.4
Mutltipliziere mit .
Schritt 6
Ersetze durch .