Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Schritt 1.1.1
Faktorisiere den Bruch.
Schritt 1.1.1.1
Faktorisiere aus heraus.
Schritt 1.1.1.1.1
Faktorisiere aus heraus.
Schritt 1.1.1.1.2
Faktorisiere aus heraus.
Schritt 1.1.1.1.3
Faktorisiere aus heraus.
Schritt 1.1.1.1.4
Faktorisiere aus heraus.
Schritt 1.1.1.1.5
Faktorisiere aus heraus.
Schritt 1.1.1.2
Faktorisiere.
Schritt 1.1.1.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.1.1.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.1.1.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.1.1.2.2
Entferne unnötige Klammern.
Schritt 1.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.1.3
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.1.4
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 1.1.5
Kürze den gemeinsamen Faktor von .
Schritt 1.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.5.2
Forme den Ausdruck um.
Schritt 1.1.6
Kürze den gemeinsamen Faktor von .
Schritt 1.1.6.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.6.2
Forme den Ausdruck um.
Schritt 1.1.7
Kürze den gemeinsamen Faktor von .
Schritt 1.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.7.2
Dividiere durch .
Schritt 1.1.8
Vereinfache jeden Term.
Schritt 1.1.8.1
Kürze den gemeinsamen Faktor von .
Schritt 1.1.8.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.8.1.2
Dividiere durch .
Schritt 1.1.8.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.1.8.2.1
Wende das Distributivgesetz an.
Schritt 1.1.8.2.2
Wende das Distributivgesetz an.
Schritt 1.1.8.2.3
Wende das Distributivgesetz an.
Schritt 1.1.8.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.1.8.3.1
Vereinfache jeden Term.
Schritt 1.1.8.3.1.1
Mutltipliziere mit .
Schritt 1.1.8.3.1.2
Bringe auf die linke Seite von .
Schritt 1.1.8.3.1.3
Schreibe als um.
Schritt 1.1.8.3.1.4
Mutltipliziere mit .
Schritt 1.1.8.3.2
Subtrahiere von .
Schritt 1.1.8.4
Wende das Distributivgesetz an.
Schritt 1.1.8.5
Bringe auf die linke Seite von .
Schritt 1.1.8.6
Kürze den gemeinsamen Faktor von .
Schritt 1.1.8.6.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.8.6.2
Dividiere durch .
Schritt 1.1.8.7
Wende das Distributivgesetz an.
Schritt 1.1.8.8
Mutltipliziere mit .
Schritt 1.1.8.9
Bringe auf die linke Seite von .
Schritt 1.1.8.10
Wende das Distributivgesetz an.
Schritt 1.1.8.11
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.8.12
Kürze den gemeinsamen Faktor von .
Schritt 1.1.8.12.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.8.12.2
Dividiere durch .
Schritt 1.1.8.13
Wende das Distributivgesetz an.
Schritt 1.1.8.14
Mutltipliziere mit .
Schritt 1.1.8.15
Bringe auf die linke Seite von .
Schritt 1.1.8.16
Schreibe als um.
Schritt 1.1.8.17
Wende das Distributivgesetz an.
Schritt 1.1.8.18
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.9
Vereinfache den Ausdruck.
Schritt 1.1.9.1
Stelle und um.
Schritt 1.1.9.2
Bewege .
Schritt 1.1.9.3
Bewege .
Schritt 1.1.9.4
Bewege .
Schritt 1.1.9.5
Bewege .
Schritt 1.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Schritt 1.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 1.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 1.2.3
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 1.2.4
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 1.3
Löse das Gleichungssystem.
Schritt 1.3.1
Löse in nach auf.
Schritt 1.3.1.1
Schreibe die Gleichung als um.
Schritt 1.3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.3.1.2.2
Vereinfache die linke Seite.
Schritt 1.3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.1.2.2.1.2
Dividiere durch .
Schritt 1.3.1.2.3
Vereinfache die rechte Seite.
Schritt 1.3.1.2.3.1
Dividiere durch .
Schritt 1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 1.3.2.1
Ersetze alle in durch .
Schritt 1.3.2.2
Vereinfache die rechte Seite.
Schritt 1.3.2.2.1
Entferne die Klammern.
Schritt 1.3.2.3
Ersetze alle in durch .
Schritt 1.3.2.4
Vereinfache die rechte Seite.
Schritt 1.3.2.4.1
Schreibe als um.
Schritt 1.3.3
Löse in nach auf.
Schritt 1.3.3.1
Schreibe die Gleichung als um.
Schritt 1.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.3.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.3.2.3
Subtrahiere von .
Schritt 1.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 1.3.4.1
Ersetze alle in durch .
Schritt 1.3.4.2
Vereinfache die rechte Seite.
Schritt 1.3.4.2.1
Vereinfache .
Schritt 1.3.4.2.1.1
Vereinfache jeden Term.
Schritt 1.3.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 1.3.4.2.1.1.2
Mutltipliziere mit .
Schritt 1.3.4.2.1.1.3
Mutltipliziere mit .
Schritt 1.3.4.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 1.3.4.2.1.2.1
Addiere und .
Schritt 1.3.4.2.1.2.2
Subtrahiere von .
Schritt 1.3.5
Löse in nach auf.
Schritt 1.3.5.1
Schreibe die Gleichung als um.
Schritt 1.3.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.5.2.2
Subtrahiere von .
Schritt 1.3.5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.3.5.3.1
Teile jeden Ausdruck in durch .
Schritt 1.3.5.3.2
Vereinfache die linke Seite.
Schritt 1.3.5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.5.3.2.1.2
Dividiere durch .
Schritt 1.3.5.3.3
Vereinfache die rechte Seite.
Schritt 1.3.5.3.3.1
Dividiere durch .
Schritt 1.3.6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 1.3.6.1
Ersetze alle in durch .
Schritt 1.3.6.2
Vereinfache die rechte Seite.
Schritt 1.3.6.2.1
Vereinfache .
Schritt 1.3.6.2.1.1
Mutltipliziere mit .
Schritt 1.3.6.2.1.2
Subtrahiere von .
Schritt 1.3.7
Liste alle Lösungen auf.
Schritt 1.4
Ersetze jeden Teilbruchkoeffizienten in durch die Werte, die für , und ermittelt wurden.
Schritt 1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.1.5
Addiere und .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Das Integral von nach ist .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Es sei . Ermittle .
Schritt 9.1.1
Differenziere .
Schritt 9.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 9.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 9.1.5
Addiere und .
Schritt 9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10
Das Integral von nach ist .
Schritt 11
Vereinfache.
Schritt 12
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .