Analysis Beispiele

Berechne das Integral Integral von Quadratwurzel von x bis 2x über arctan(t) nach t
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Kombiniere und .
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Setze die untere Grenze für in ein.
Schritt 3.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.3
Kombiniere und .
Schritt 3.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.4.2
Forme den Ausdruck um.
Schritt 3.3.5
Vereinfache.
Schritt 3.4
Setze die obere Grenze für in ein.
Schritt 3.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Wende die Produktregel auf an.
Schritt 3.5.2
Potenziere mit .
Schritt 3.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 3.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Das Integral von nach ist .
Schritt 7
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Berechne bei und .
Schritt 7.2
Berechne bei und .
Schritt 7.3
Entferne die Klammern.
Schritt 8
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.1.2
Kombiniere und .
Schritt 9.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.3
Kombiniere und .
Schritt 9.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.5
Mutltipliziere mit .