Analysis Beispiele

Verwende die Grenzwertdefinition, um die Ableitung zu bestimmen f(x)=cos(x)
Schritt 1
Betrachte die Grenzwertdefinition der Ableitung.
Schritt 2
Bestimme die Komponenten der Definition.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne die Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.1.2
Die endgültige Lösung ist .
Schritt 2.2
Bestimme die Komponenten der Definition.
Schritt 3
Setze die Komponenten ein.
Schritt 4
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 4.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 4.1.2.1.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.1.2.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.1.2.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.1.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.3.1
Addiere und .
Schritt 4.1.2.3.2
Subtrahiere von .
Schritt 4.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 4.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 4.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Differenziere den Zähler und Nenner.
Schritt 4.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.3.3.1.2
Die Ableitung von nach ist .
Schritt 4.3.3.1.3
Ersetze alle durch .
Schritt 4.3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.3.5
Addiere und .
Schritt 4.3.3.6
Mutltipliziere mit .
Schritt 4.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4
Dividiere durch .
Schritt 5
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 5.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 5.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 7
Addiere und .
Schritt 8