Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die zweite Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Wende die grundlegenden Potenzregeln an.
Schritt 1.1.1.1.1
Schreibe als um.
Schritt 1.1.1.1.2
Multipliziere die Exponenten in .
Schritt 1.1.1.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.1.1.2.2
Mutltipliziere mit .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3
Vereinfache.
Schritt 1.1.1.3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.1.3.2
Vereine die Terme
Schritt 1.1.1.3.2.1
Kombiniere und .
Schritt 1.1.1.3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2
Bestimme die zweite Ableitung.
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Wende die grundlegenden Potenzregeln an.
Schritt 1.1.2.2.1
Schreibe als um.
Schritt 1.1.2.2.2
Multipliziere die Exponenten in .
Schritt 1.1.2.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.2.2.2.2
Mutltipliziere mit .
Schritt 1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4
Mutltipliziere mit .
Schritt 1.1.2.5
Vereinfache.
Schritt 1.1.2.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.2.5.2
Kombiniere und .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 2
Schritt 2.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2.2
Löse nach auf.
Schritt 2.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.2.2
Vereinfache .
Schritt 2.2.2.1
Schreibe als um.
Schritt 2.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2.2.3
Plus oder Minus ist .
Schritt 2.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Potenziere mit .
Schritt 4.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.2.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2.3
Forme den Ausdruck um.
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Potenziere mit .
Schritt 5.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.3
Forme den Ausdruck um.
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 6
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 7