Analysis Beispiele

Bestimme die Konkavität f(x)=x^14+8x^2
Schritt 1
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2.3
Mutltipliziere mit .
Schritt 1.1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3.3
Mutltipliziere mit .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 1.2.3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konvex, weil positiv ist.
Der Graph ist konvex
Der Graph ist konvex
Schritt 5