Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.1.2
Die Ableitung von nach ist .
Schritt 2.1.1.3
Ersetze alle durch .
Schritt 2.1.2
Differenziere.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.4
Kombiniere Brüche.
Schritt 2.1.2.4.1
Addiere und .
Schritt 2.1.2.4.2
Kombiniere und .
Schritt 2.1.2.4.3
Kombiniere und .
Schritt 2.2
Bestimme die zweite Ableitung.
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere.
Schritt 2.2.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.2
Mutltipliziere mit .
Schritt 2.2.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.3.6
Vereinfache den Ausdruck.
Schritt 2.2.3.6.1
Addiere und .
Schritt 2.2.3.6.2
Mutltipliziere mit .
Schritt 2.2.4
Potenziere mit .
Schritt 2.2.5
Potenziere mit .
Schritt 2.2.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.7
Addiere und .
Schritt 2.2.8
Subtrahiere von .
Schritt 2.2.9
Kombiniere und .
Schritt 2.2.10
Vereinfache.
Schritt 2.2.10.1
Wende das Distributivgesetz an.
Schritt 2.2.10.2
Vereinfache jeden Term.
Schritt 2.2.10.2.1
Mutltipliziere mit .
Schritt 2.2.10.2.2
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Setze den Zähler gleich Null.
Schritt 3.3
Löse die Gleichung nach auf.
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2.2
Vereinfache die linke Seite.
Schritt 3.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.2.1.2
Dividiere durch .
Schritt 3.3.2.3
Vereinfache die rechte Seite.
Schritt 3.3.2.3.1
Dividiere durch .
Schritt 3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.3.4
Jede Wurzel von ist .
Schritt 3.3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Schritt 4.1.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.2
Addiere und .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Schritt 4.3.2.1
Potenziere mit .
Schritt 4.3.2.2
Addiere und .
Schritt 4.3.2.3
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Zähler.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Addiere und .
Schritt 6.2.2
Vereinfache den Nenner.
Schritt 6.2.2.1
Potenziere mit .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.2.3
Potenziere mit .
Schritt 6.2.3
Dividiere durch .
Schritt 6.2.4
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache den Zähler.
Schritt 7.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Addiere und .
Schritt 7.2.2
Vereinfache den Nenner.
Schritt 7.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.3
Dividiere durch .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache den Zähler.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Addiere und .
Schritt 8.2.2
Vereinfache den Nenner.
Schritt 8.2.2.1
Potenziere mit .
Schritt 8.2.2.2
Addiere und .
Schritt 8.2.2.3
Potenziere mit .
Schritt 8.2.3
Dividiere durch .
Schritt 8.2.4
Die endgültige Lösung ist .
Schritt 8.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Schritt 10