Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die zweite Ableitung.
Schritt 2.1.1
Bestimme die erste Ableitung.
Schritt 2.1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.1.1.2
Differenziere.
Schritt 2.1.1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.2
Mutltipliziere mit .
Schritt 2.1.1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.1.2.6
Vereinfache durch Addieren von Termen.
Schritt 2.1.1.2.6.1
Addiere und .
Schritt 2.1.1.2.6.2
Mutltipliziere mit .
Schritt 2.1.1.2.6.3
Subtrahiere von .
Schritt 2.1.1.2.6.4
Addiere und .
Schritt 2.1.2
Bestimme die zweite Ableitung.
Schritt 2.1.2.1
Wende die grundlegenden Potenzregeln an.
Schritt 2.1.2.1.1
Schreibe als um.
Schritt 2.1.2.1.2
Multipliziere die Exponenten in .
Schritt 2.1.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.2.2
Mutltipliziere mit .
Schritt 2.1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.2.3
Ersetze alle durch .
Schritt 2.1.2.3
Differenziere.
Schritt 2.1.2.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.3.4
Vereinfache den Ausdruck.
Schritt 2.1.2.3.4.1
Addiere und .
Schritt 2.1.2.3.4.2
Mutltipliziere mit .
Schritt 2.1.2.4
Vereinfache.
Schritt 2.1.2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.1.2.4.2
Vereine die Terme
Schritt 2.1.2.4.2.1
Kombiniere und .
Schritt 2.1.2.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Setze den Zähler gleich Null.
Schritt 2.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 3
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache den Nenner.
Schritt 5.2.1.1
Addiere und .
Schritt 5.2.1.2
Potenziere mit .
Schritt 5.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Nenner.
Schritt 6.2.1.1
Addiere und .
Schritt 6.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.2
Vereinfache den Ausdruck.
Schritt 6.2.2.1
Dividiere durch .
Schritt 6.2.2.2
Mutltipliziere mit .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 7
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konvex im Intervall , da positiv ist
Konkav im Intervall , da negativ ist
Schritt 8