Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die zweite Ableitung.
Schritt 2.1.1
Bestimme die erste Ableitung.
Schritt 2.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2
Berechne .
Schritt 2.1.1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.1.2.3
Kombiniere und .
Schritt 2.1.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.1.2.5
Vereinfache den Zähler.
Schritt 2.1.1.2.5.1
Mutltipliziere mit .
Schritt 2.1.1.2.5.2
Subtrahiere von .
Schritt 2.1.1.3
Berechne .
Schritt 2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.1.3.4
Kombiniere und .
Schritt 2.1.1.3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.1.3.6
Vereinfache den Zähler.
Schritt 2.1.1.3.6.1
Mutltipliziere mit .
Schritt 2.1.1.3.6.2
Subtrahiere von .
Schritt 2.1.1.3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.1.3.8
Kombiniere und .
Schritt 2.1.1.3.9
Kombiniere und .
Schritt 2.1.1.3.10
Mutltipliziere mit .
Schritt 2.1.1.3.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.1.1.3.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.1.4
Kombiniere und .
Schritt 2.1.2
Bestimme die zweite Ableitung.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Berechne .
Schritt 2.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.2.2.4
Kombiniere und .
Schritt 2.1.2.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.2.2.6
Vereinfache den Zähler.
Schritt 2.1.2.2.6.1
Mutltipliziere mit .
Schritt 2.1.2.2.6.2
Subtrahiere von .
Schritt 2.1.2.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.2.8
Kombiniere und .
Schritt 2.1.2.2.9
Mutltipliziere mit .
Schritt 2.1.2.2.10
Mutltipliziere mit .
Schritt 2.1.2.2.11
Mutltipliziere mit .
Schritt 2.1.2.2.12
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.1.2.3
Berechne .
Schritt 2.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.3.2
Schreibe als um.
Schritt 2.1.2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.3.3
Ersetze alle durch .
Schritt 2.1.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.5
Multipliziere die Exponenten in .
Schritt 2.1.2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.3.5.2
Kombiniere und .
Schritt 2.1.2.3.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.2.3.7
Kombiniere und .
Schritt 2.1.2.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.2.3.9
Vereinfache den Zähler.
Schritt 2.1.2.3.9.1
Mutltipliziere mit .
Schritt 2.1.2.3.9.2
Subtrahiere von .
Schritt 2.1.2.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.3.11
Kombiniere und .
Schritt 2.1.2.3.12
Kombiniere und .
Schritt 2.1.2.3.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.2.3.13.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.2.3.13.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.2.3.13.3
Subtrahiere von .
Schritt 2.1.2.3.13.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.3.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.1.2.3.15
Mutltipliziere mit .
Schritt 2.1.2.3.16
Mutltipliziere mit .
Schritt 2.1.2.3.17
Mutltipliziere mit .
Schritt 2.1.2.3.18
Mutltipliziere mit .
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 2.2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2.2.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 2.2.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.2.2.4
hat Faktoren von und .
Schritt 2.2.2.5
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.2.2.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.2.2.7
Mutltipliziere mit .
Schritt 2.2.2.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.2.2.9
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2.2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 2.2.3.1
Multipliziere jeden Term in mit .
Schritt 2.2.3.2
Vereinfache die linke Seite.
Schritt 2.2.3.2.1
Vereinfache jeden Term.
Schritt 2.2.3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.1.2.2
Forme den Ausdruck um.
Schritt 2.2.3.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.2.1.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.1.3.3
Forme den Ausdruck um.
Schritt 2.2.3.2.1.4
Dividiere durch .
Schritt 2.2.3.2.1.5
Vereinfache.
Schritt 2.2.3.2.1.6
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.3.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.1.7.2
Forme den Ausdruck um.
Schritt 2.2.3.2.1.8
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.2.1.8.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.1.8.2
Forme den Ausdruck um.
Schritt 2.2.3.3
Vereinfache die rechte Seite.
Schritt 2.2.3.3.1
Multipliziere .
Schritt 2.2.3.3.1.1
Mutltipliziere mit .
Schritt 2.2.3.3.1.2
Mutltipliziere mit .
Schritt 2.2.4
Löse die Gleichung.
Schritt 2.2.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.4.2.2
Vereinfache die linke Seite.
Schritt 2.2.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2.2.1.2
Dividiere durch .
Schritt 2.2.4.2.3
Vereinfache die rechte Seite.
Schritt 2.2.4.2.3.1
Dividiere durch .
Schritt 3
Schritt 3.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 3.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 3.1.2
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 3.2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 5.2.2.1
Mutltipliziere mit .
Schritt 5.2.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.2.2.2.1
Bewege .
Schritt 5.2.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.2.2.4
Addiere und .
Schritt 5.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4
Vereinfache den Zähler.
Schritt 5.2.4.1
Dividiere durch .
Schritt 5.2.4.2
Potenziere mit .
Schritt 5.2.4.3
Mutltipliziere mit .
Schritt 5.2.4.4
Addiere und .
Schritt 5.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.6
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konkav, weil negativ ist.
Der Graph ist konkav
Der Graph ist konkav
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache den Ausdruck.
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3
Kürze den gemeinsamen Faktor von .
Schritt 6.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2
Forme den Ausdruck um.
Schritt 6.4
Mutltipliziere mit .
Schritt 6.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Schritt 6.6
Der Graph ist im Intervall konvex, weil positiv ist.
Der Graph ist konvex
Der Graph ist konvex
Schritt 7
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Der Graph ist konkav
Der Graph ist konvex
Schritt 8