Analysis Beispiele

Bestimme die Konkavität f(x)=3x^4-4x^3-6x^2+12x+1
Schritt 1
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.4.3
Mutltipliziere mit .
Schritt 1.1.1.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.5.3
Mutltipliziere mit .
Schritt 1.1.1.6
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.6.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.6.2
Addiere und .
Schritt 1.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2.3
Mutltipliziere mit .
Schritt 1.1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3.3
Mutltipliziere mit .
Schritt 1.1.2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4.3
Mutltipliziere mit .
Schritt 1.1.2.5
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.5.2
Addiere und .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2.1.4
Faktorisiere aus heraus.
Schritt 1.2.2.1.5
Faktorisiere aus heraus.
Schritt 1.2.2.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 1.2.2.2.1.1.2
Schreibe um als plus
Schritt 1.2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 1.2.2.2.1.1.4
Mutltipliziere mit .
Schritt 1.2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.2.2.2.2
Entferne unnötige Klammern.
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2.2.2.1.2
Dividiere durch .
Schritt 1.2.4.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Addiere und .
Schritt 4.2.2.2
Subtrahiere von .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 5
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Addiere und .
Schritt 5.2.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 6
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Substrahieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 7
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konvex im Intervall , da positiv ist
Konkav im Intervall , da negativ ist
Konvex im Intervall , da positiv ist
Schritt 8