Analysis Beispiele

Bestimme die Konkavität f(x)=10x^2-10sin(2x)
Schritt 1
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.3.2.2
Die Ableitung von nach ist .
Schritt 1.1.1.3.2.3
Ersetze alle durch .
Schritt 1.1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.5
Mutltipliziere mit .
Schritt 1.1.1.3.6
Bringe auf die linke Seite von .
Schritt 1.1.1.3.7
Mutltipliziere mit .
Schritt 1.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2.3
Mutltipliziere mit .
Schritt 1.1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.3.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3.2.3
Ersetze alle durch .
Schritt 1.1.2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3.5
Mutltipliziere mit .
Schritt 1.1.2.3.6
Mutltipliziere mit .
Schritt 1.1.2.3.7
Mutltipliziere mit .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 1.2.3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 1.2.5
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Der genau Wert von ist .
Schritt 1.2.6
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Teile jeden Ausdruck in durch .
Schritt 1.2.6.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.1.2
Dividiere durch .
Schritt 1.2.6.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.6.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.3.2.1
Mutltipliziere mit .
Schritt 1.2.6.3.2.2
Mutltipliziere mit .
Schritt 1.2.7
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 1.2.8
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.1
Subtrahiere von .
Schritt 1.2.8.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 1.2.8.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.8.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.8.3.2.1.2
Dividiere durch .
Schritt 1.2.8.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.8.3.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.3.3.2.1
Mutltipliziere mit .
Schritt 1.2.8.3.3.2.2
Mutltipliziere mit .
Schritt 1.2.9
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.9.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.9.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.9.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.9.4.2
Dividiere durch .
Schritt 1.2.10
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.10.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 1.2.10.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.10.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.10.3.1
Kombiniere und .
Schritt 1.2.10.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.10.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.10.4.1
Bringe auf die linke Seite von .
Schritt 1.2.10.4.2
Subtrahiere von .
Schritt 1.2.10.5
Liste die neuen Winkel auf.
Schritt 1.2.11
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Der genau Wert von ist .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 5