Analysis Beispiele

Bestimme die Konkavität y=-x^3+9x^2-8
Schritt 1
Schreibe als Funktion.
Schritt 2
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.3
Mutltipliziere mit .
Schritt 2.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.3.3
Mutltipliziere mit .
Schritt 2.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.1.4.2
Addiere und .
Schritt 2.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.2.3
Mutltipliziere mit .
Schritt 2.1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.3
Mutltipliziere mit .
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.1.2
Dividiere durch .
Schritt 2.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.3.1
Dividiere durch .
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 6
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 7
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konvex im Intervall , da positiv ist
Konkav im Intervall , da negativ ist
Schritt 8