Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die zweite Ableitung.
Schritt 2.1.1
Bestimme die erste Ableitung.
Schritt 2.1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.1.1.2
Differenziere.
Schritt 2.1.1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.2
Bringe auf die linke Seite von .
Schritt 2.1.1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.1.2.6
Vereinfache den Ausdruck.
Schritt 2.1.1.2.6.1
Addiere und .
Schritt 2.1.1.2.6.2
Mutltipliziere mit .
Schritt 2.1.1.3
Vereinfache.
Schritt 2.1.1.3.1
Wende das Distributivgesetz an.
Schritt 2.1.1.3.2
Wende das Distributivgesetz an.
Schritt 2.1.1.3.3
Vereinfache den Zähler.
Schritt 2.1.1.3.3.1
Vereinfache jeden Term.
Schritt 2.1.1.3.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.1.3.3.1.1.1
Bewege .
Schritt 2.1.1.3.3.1.1.2
Mutltipliziere mit .
Schritt 2.1.1.3.3.1.2
Mutltipliziere mit .
Schritt 2.1.1.3.3.2
Subtrahiere von .
Schritt 2.1.1.3.4
Faktorisiere aus heraus.
Schritt 2.1.1.3.4.1
Faktorisiere aus heraus.
Schritt 2.1.1.3.4.2
Faktorisiere aus heraus.
Schritt 2.1.1.3.4.3
Faktorisiere aus heraus.
Schritt 2.1.2
Bestimme die zweite Ableitung.
Schritt 2.1.2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2.2
Multipliziere die Exponenten in .
Schritt 2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2.2
Mutltipliziere mit .
Schritt 2.1.2.3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2.4
Differenziere.
Schritt 2.1.2.4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.4.4
Vereinfache den Ausdruck.
Schritt 2.1.2.4.4.1
Addiere und .
Schritt 2.1.2.4.4.2
Mutltipliziere mit .
Schritt 2.1.2.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.4.6
Vereinfache durch Addieren von Termen.
Schritt 2.1.2.4.6.1
Mutltipliziere mit .
Schritt 2.1.2.4.6.2
Addiere und .
Schritt 2.1.2.5
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.2.5.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.5.3
Ersetze alle durch .
Schritt 2.1.2.6
Vereinfache durch Herausfaktorisieren.
Schritt 2.1.2.6.1
Mutltipliziere mit .
Schritt 2.1.2.6.2
Faktorisiere aus heraus.
Schritt 2.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.6.2.2
Faktorisiere aus heraus.
Schritt 2.1.2.6.2.3
Faktorisiere aus heraus.
Schritt 2.1.2.7
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.7.1
Faktorisiere aus heraus.
Schritt 2.1.2.7.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.7.3
Forme den Ausdruck um.
Schritt 2.1.2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.11
Vereinfache den Ausdruck.
Schritt 2.1.2.11.1
Addiere und .
Schritt 2.1.2.11.2
Mutltipliziere mit .
Schritt 2.1.2.12
Vereinfache.
Schritt 2.1.2.12.1
Wende das Distributivgesetz an.
Schritt 2.1.2.12.2
Vereinfache den Zähler.
Schritt 2.1.2.12.2.1
Vereinfache jeden Term.
Schritt 2.1.2.12.2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.2.12.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2.12.2.1.1.2
Wende das Distributivgesetz an.
Schritt 2.1.2.12.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.1.2.12.2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.12.2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.12.2.1.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.1.2.12.2.1.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.2.12.2.1.2.1.2.1
Bewege .
Schritt 2.1.2.12.2.1.2.1.2.2
Mutltipliziere mit .
Schritt 2.1.2.12.2.1.2.1.3
Bringe auf die linke Seite von .
Schritt 2.1.2.12.2.1.2.1.4
Mutltipliziere mit .
Schritt 2.1.2.12.2.1.2.1.5
Mutltipliziere mit .
Schritt 2.1.2.12.2.1.2.2
Subtrahiere von .
Schritt 2.1.2.12.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.2.12.2.1.3.1
Bewege .
Schritt 2.1.2.12.2.1.3.2
Mutltipliziere mit .
Schritt 2.1.2.12.2.1.4
Mutltipliziere mit .
Schritt 2.1.2.12.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.1.2.12.2.2.1
Subtrahiere von .
Schritt 2.1.2.12.2.2.2
Addiere und .
Schritt 2.1.2.12.2.2.3
Addiere und .
Schritt 2.1.2.12.2.2.4
Addiere und .
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Setze den Zähler gleich Null.
Schritt 2.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 3
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache den Nenner.
Schritt 5.2.1.1
Subtrahiere von .
Schritt 5.2.1.2
Potenziere mit .
Schritt 5.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.2.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.2.1.1
Faktorisiere aus heraus.
Schritt 5.2.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2.3
Forme den Ausdruck um.
Schritt 5.2.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Nenner.
Schritt 6.2.1.1
Subtrahiere von .
Schritt 6.2.1.2
Potenziere mit .
Schritt 6.2.2
Dividiere durch .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 7
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konkav im Intervall , da negativ ist
Konvex im Intervall , da positiv ist
Schritt 8