Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die zweite Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.4
Addiere und .
Schritt 1.1.2
Bestimme die zweite Ableitung.
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2.1.2
Dividiere durch .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Schritt 1.2.2.3.1
Dividiere durch .
Schritt 1.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.4
Vereinfache .
Schritt 1.2.4.1
Schreibe als um.
Schritt 1.2.4.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Potenziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Potenziere mit .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 6
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konkav im Intervall , da negativ ist
Konvex im Intervall , da positiv ist
Schritt 7