Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Wenn stetig im Intervall ist und differenzierbar im Intervall , dann gibt es mindestens eine reelle Zahl im Intervall derart, dass . Der Mittelwertsatz drückt das Verhältnis aus zwischen der Steigung der Tangente an die Kurve im Punkt und der Steigung der Geraden durch die Punkte und .
Wenn stetig im Intervall ist
und wenn im Intervall differenzierbar ist,
dann gibt es mindestens einen Punkt in : .
Schritt 2
Schritt 2.1
Um herauszufinden, ob die Funktion im Intervall stetig ist oder nicht, ermittle den Definitionsbereich von .
Schritt 2.1.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2.1.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 3
Schritt 3.1
Bestimme die erste Ableitung.
Schritt 3.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2
Berechne .
Schritt 3.1.2.1
Benutze , um als neu zu schreiben.
Schritt 3.1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.1.2.5
Kombiniere und .
Schritt 3.1.2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.7
Vereinfache den Zähler.
Schritt 3.1.2.7.1
Mutltipliziere mit .
Schritt 3.1.2.7.2
Subtrahiere von .
Schritt 3.1.2.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.9
Kombiniere und .
Schritt 3.1.2.10
Kombiniere und .
Schritt 3.1.2.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.1.2.12
Faktorisiere aus heraus.
Schritt 3.1.2.13
Kürze die gemeinsamen Faktoren.
Schritt 3.1.2.13.1
Faktorisiere aus heraus.
Schritt 3.1.2.13.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.13.3
Forme den Ausdruck um.
Schritt 3.1.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 3.1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.3.2
Addiere und .
Schritt 3.2
Die erste Ableitung von nach ist .
Schritt 4
Schritt 4.1
Um herauszufinden, ob die Funktion im Intervall stetig ist oder nicht, ermittle den Definitionsbereich von .
Schritt 4.1.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 4.1.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 4.1.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 4.1.2
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.1.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.1.4
Löse nach auf.
Schritt 4.1.4.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 4.1.4.2
Vereinfache jede Seite der Gleichung.
Schritt 4.1.4.2.1
Benutze , um als neu zu schreiben.
Schritt 4.1.4.2.2
Vereinfache die linke Seite.
Schritt 4.1.4.2.2.1
Vereinfache .
Schritt 4.1.4.2.2.1.1
Multipliziere die Exponenten in .
Schritt 4.1.4.2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.4.2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 4.1.4.2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.4.2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 4.1.4.2.2.1.2
Vereinfache.
Schritt 4.1.4.2.3
Vereinfache die rechte Seite.
Schritt 4.1.4.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 5
Die Funktion ist im Intervall differenzierbar, da die Ableitung im Intervall stetig ist.
Die Funktion ist differenzierbar.
Schritt 6
Die Funktion erfüllt die beiden Bedingungen des Mittelwertsatzes. Sie ist stetig im Intervall und differenzierbar im Intervall .
ist stetig im Intervall und differenzierbar im Intervall .
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Entferne die Klammern.
Schritt 7.2.2
Vereinfache jeden Term.
Schritt 7.2.2.1
Schreibe als um.
Schritt 7.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.2.2.3
Mutltipliziere mit .
Schritt 7.2.3
Addiere und .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Entferne die Klammern.
Schritt 8.2.2
Die endgültige Lösung ist .
Schritt 9
Schritt 9.1
Faktorisiere jeden Term.
Schritt 9.1.1
Mutltipliziere mit .
Schritt 9.1.2
Subtrahiere von .
Schritt 9.1.3
Mutltipliziere mit .
Schritt 9.1.4
Subtrahiere von .
Schritt 9.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 9.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 9.2.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 9.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 9.2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 9.2.5
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 9.2.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 9.2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 9.2.8
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 9.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 9.3.1
Multipliziere jeden Term in mit .
Schritt 9.3.2
Vereinfache die linke Seite.
Schritt 9.3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.3.2.2
Multipliziere .
Schritt 9.3.2.2.1
Kombiniere und .
Schritt 9.3.2.2.2
Mutltipliziere mit .
Schritt 9.3.2.3
Kürze den gemeinsamen Faktor von .
Schritt 9.3.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 9.3.2.3.2
Forme den Ausdruck um.
Schritt 9.3.3
Vereinfache die rechte Seite.
Schritt 9.3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 9.3.3.1.1
Faktorisiere aus heraus.
Schritt 9.3.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 9.3.3.1.3
Forme den Ausdruck um.
Schritt 9.3.3.2
Wende das Distributivgesetz an.
Schritt 9.4
Löse die Gleichung.
Schritt 9.4.1
Schreibe die Gleichung als um.
Schritt 9.4.2
Faktorisiere aus heraus.
Schritt 9.4.2.1
Faktorisiere aus heraus.
Schritt 9.4.2.2
Faktorisiere aus heraus.
Schritt 9.4.2.3
Faktorisiere aus heraus.
Schritt 9.4.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 9.4.3.1
Teile jeden Ausdruck in durch .
Schritt 9.4.3.2
Vereinfache die linke Seite.
Schritt 9.4.3.2.1
Faktorisiere aus heraus.
Schritt 9.4.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.4.3.2.2.1
Faktorisiere aus heraus.
Schritt 9.4.3.2.2.2
Faktorisiere aus heraus.
Schritt 9.4.3.2.2.3
Faktorisiere aus heraus.
Schritt 9.4.3.2.2.4
Kürze den gemeinsamen Faktor.
Schritt 9.4.3.2.2.5
Forme den Ausdruck um.
Schritt 9.4.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 9.4.3.2.4
Dividiere durch .
Schritt 9.4.3.3
Vereinfache die rechte Seite.
Schritt 9.4.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 9.4.3.3.1.1
Faktorisiere aus heraus.
Schritt 9.4.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 9.4.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 9.4.3.3.1.2.2
Faktorisiere aus heraus.
Schritt 9.4.3.3.1.2.3
Faktorisiere aus heraus.
Schritt 9.4.3.3.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 9.4.3.3.1.2.5
Forme den Ausdruck um.
Schritt 9.4.3.3.2
Mutltipliziere mit .
Schritt 9.4.3.3.3
Mutltipliziere mit .
Schritt 9.4.3.3.4
Multipliziere den Nenner aus unter Verwendung der FOIL-Methode.
Schritt 9.4.3.3.5
Vereinfache.
Schritt 9.4.3.3.6
Kürze die gemeinsamen Faktoren.
Schritt 9.4.3.3.6.1
Faktorisiere aus heraus.
Schritt 9.4.3.3.6.2
Kürze den gemeinsamen Faktor.
Schritt 9.4.3.3.6.3
Forme den Ausdruck um.
Schritt 9.4.3.3.7
Kürze den gemeinsamen Teiler von und .
Schritt 9.4.3.3.7.1
Faktorisiere aus heraus.
Schritt 9.4.3.3.7.2
Faktorisiere aus heraus.
Schritt 9.4.3.3.7.3
Faktorisiere aus heraus.
Schritt 9.4.3.3.7.4
Kürze die gemeinsamen Faktoren.
Schritt 9.4.3.3.7.4.1
Faktorisiere aus heraus.
Schritt 9.4.3.3.7.4.2
Kürze den gemeinsamen Faktor.
Schritt 9.4.3.3.7.4.3
Forme den Ausdruck um.
Schritt 9.4.4
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 9.4.5
Vereinfache den Exponenten.
Schritt 9.4.5.1
Vereinfache die linke Seite.
Schritt 9.4.5.1.1
Vereinfache .
Schritt 9.4.5.1.1.1
Multipliziere die Exponenten in .
Schritt 9.4.5.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.4.5.1.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 9.4.5.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.4.5.1.1.1.2.2
Forme den Ausdruck um.
Schritt 9.4.5.1.1.2
Vereinfache.
Schritt 9.4.5.2
Vereinfache die rechte Seite.
Schritt 9.4.5.2.1
Vereinfache .
Schritt 9.4.5.2.1.1
Wende die Produktregel auf an.
Schritt 9.4.5.2.1.2
Potenziere mit .
Schritt 9.4.5.2.1.3
Vereinfache .
Schritt 9.4.5.2.1.3.1
Schreibe als um.
Schritt 9.4.5.2.1.3.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 9.4.5.2.1.3.2.1
Wende das Distributivgesetz an.
Schritt 9.4.5.2.1.3.2.2
Wende das Distributivgesetz an.
Schritt 9.4.5.2.1.3.2.3
Wende das Distributivgesetz an.
Schritt 9.4.5.2.1.3.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 9.4.5.2.1.3.3.1
Vereinfache jeden Term.
Schritt 9.4.5.2.1.3.3.1.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 9.4.5.2.1.3.3.1.2
Mutltipliziere mit .
Schritt 9.4.5.2.1.3.3.1.3
Schreibe als um.
Schritt 9.4.5.2.1.3.3.1.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 9.4.5.2.1.3.3.1.5
Bringe auf die linke Seite von .
Schritt 9.4.5.2.1.3.3.1.6
Mutltipliziere mit .
Schritt 9.4.5.2.1.3.3.2
Addiere und .
Schritt 9.4.5.2.1.3.3.3
Addiere und .
Schritt 10
Es gibt eine Tangente bei parallel zur Geraden, die durch die Endpunkte und verläuft.
Es gibt eine Tangente bei parallel zur Geraden, die durch die Endpunkte und verläuft
Schritt 11