Analysis Beispiele

Bestimme, wo der Mittelwertsatz erfüllt ist y=3x^3-2x , (1,1)
,
Schritt 1
Wenn stetig im Intervall ist und differenzierbar im Intervall , dann gibt es mindestens eine reelle Zahl im Intervall derart, dass . Der Mittelwertsatz drückt das Verhältnis aus zwischen der Steigung der Tangente an die Kurve im Punkt und der Steigung der Geraden durch die Punkte und .
Wenn stetig im Intervall ist
und wenn im Intervall differenzierbar ist,
dann gibt es mindestens einen Punkt in : .
Schritt 2
Überprüfe, ob stetig ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 3
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.2.3
Mutltipliziere mit .
Schritt 3.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.3.3
Mutltipliziere mit .
Schritt 3.2
Die erste Ableitung von nach ist .
Schritt 4
Find if the derivative is continuous on No solution.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 5
Die Funktion ist im Intervall differenzierbar, da die Ableitung im Intervall stetig ist.
Die Funktion ist differenzierbar.
Schritt 6
Die Funktion erfüllt die beiden Bedingungen des Mittelwertsatzes. Sie ist stetig im Intervall und differenzierbar im Intervall .
Keine Lösung
Schritt 7
Berechne aus dem Intervall .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 8
Die Gleichung hat einen nicht definierten Bruch.
Undefiniert
Schritt 9
There are no solution, so there is no value where the tangent line is parallel to the line that passes through the end points and .
No x value found where the tangent line at x is parallel to the line that passes through the end points and
Schritt 10