Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen h(x)=(x+2)^7-7x-1
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.1.3
Ersetze alle durch .
Schritt 1.1.2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.5
Addiere und .
Schritt 1.1.2.6
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Wende den binomischen Lehrsatz an.
Schritt 2.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.2.2
Potenziere mit .
Schritt 2.2.1.2.3
Mutltipliziere mit .
Schritt 2.2.1.2.4
Potenziere mit .
Schritt 2.2.1.2.5
Mutltipliziere mit .
Schritt 2.2.1.2.6
Potenziere mit .
Schritt 2.2.1.2.7
Mutltipliziere mit .
Schritt 2.2.1.2.8
Potenziere mit .
Schritt 2.2.1.2.9
Mutltipliziere mit .
Schritt 2.2.1.2.10
Potenziere mit .
Schritt 2.2.1.3
Wende das Distributivgesetz an.
Schritt 2.2.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.4.2
Mutltipliziere mit .
Schritt 2.2.1.4.3
Mutltipliziere mit .
Schritt 2.2.1.4.4
Mutltipliziere mit .
Schritt 2.2.1.4.5
Mutltipliziere mit .
Schritt 2.2.1.4.6
Mutltipliziere mit .
Schritt 2.2.2
Subtrahiere von .
Schritt 2.3
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 5
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Addiere und .
Schritt 5.2.1.2
Potenziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Addiere und .
Schritt 6.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Addiere und .
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9