Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.2
Addiere und .
Schritt 1.2
Bestimme die zweite Ableitung.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.2.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.4.2
Addiere und .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Vereinfache jeden Term.
Schritt 3.1.2.1.1
Wende die Produktregel auf an.
Schritt 3.1.2.1.2
Potenziere mit .
Schritt 3.1.2.1.3
Potenziere mit .
Schritt 3.1.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.2.1.4.2
Faktorisiere aus heraus.
Schritt 3.1.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.4.4
Forme den Ausdruck um.
Schritt 3.1.2.1.5
Kombiniere und .
Schritt 3.1.2.1.6
Mutltipliziere mit .
Schritt 3.1.2.1.7
Wende die Produktregel auf an.
Schritt 3.1.2.1.8
Potenziere mit .
Schritt 3.1.2.1.9
Potenziere mit .
Schritt 3.1.2.1.10
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.10.1
Faktorisiere aus heraus.
Schritt 3.1.2.1.10.2
Faktorisiere aus heraus.
Schritt 3.1.2.1.10.3
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.10.4
Forme den Ausdruck um.
Schritt 3.1.2.1.11
Kombiniere und .
Schritt 3.1.2.1.12
Mutltipliziere mit .
Schritt 3.1.2.1.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.1.14
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.14.1
Faktorisiere aus heraus.
Schritt 3.1.2.1.14.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.14.3
Forme den Ausdruck um.
Schritt 3.1.2.1.15
Mutltipliziere mit .
Schritt 3.1.2.2
Ermittle den gemeinsamen Nenner.
Schritt 3.1.2.2.1
Mutltipliziere mit .
Schritt 3.1.2.2.2
Mutltipliziere mit .
Schritt 3.1.2.2.3
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.1.2.2.4
Mutltipliziere mit .
Schritt 3.1.2.2.5
Mutltipliziere mit .
Schritt 3.1.2.2.6
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.1.2.2.7
Mutltipliziere mit .
Schritt 3.1.2.2.8
Mutltipliziere mit .
Schritt 3.1.2.2.9
Mutltipliziere mit .
Schritt 3.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.4
Vereinfache jeden Term.
Schritt 3.1.2.4.1
Mutltipliziere mit .
Schritt 3.1.2.4.2
Mutltipliziere mit .
Schritt 3.1.2.4.3
Mutltipliziere mit .
Schritt 3.1.2.5
Vereinfache den Ausdruck.
Schritt 3.1.2.5.1
Subtrahiere von .
Schritt 3.1.2.5.2
Addiere und .
Schritt 3.1.2.5.3
Subtrahiere von .
Schritt 3.1.2.5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.6
Die endgültige Lösung ist .
Schritt 3.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall ist der Wendepunkt .
Schritt 8