Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2
Bringe auf die linke Seite von .
Schritt 1.1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.6
Vereinfache den Ausdruck.
Schritt 1.1.2.6.1
Addiere und .
Schritt 1.1.2.6.2
Mutltipliziere mit .
Schritt 1.1.3
Potenziere mit .
Schritt 1.1.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.5
Addiere und .
Schritt 1.1.6
Vereinfache.
Schritt 1.1.6.1
Wende das Distributivgesetz an.
Schritt 1.1.6.2
Wende das Distributivgesetz an.
Schritt 1.1.6.3
Vereinfache den Zähler.
Schritt 1.1.6.3.1
Vereinfache jeden Term.
Schritt 1.1.6.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.6.3.1.1.1
Bewege .
Schritt 1.1.6.3.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.6.3.1.1.3
Addiere und .
Schritt 1.1.6.3.1.2
Mutltipliziere mit .
Schritt 1.1.6.3.2
Subtrahiere von .
Schritt 1.1.6.4
Faktorisiere aus heraus.
Schritt 1.1.6.4.1
Faktorisiere aus heraus.
Schritt 1.1.6.4.2
Faktorisiere aus heraus.
Schritt 1.1.6.4.3
Faktorisiere aus heraus.
Schritt 1.1.6.5
Vereinfache den Nenner.
Schritt 1.1.6.5.1
Schreibe als um.
Schritt 1.1.6.5.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.1.6.5.3
Wende die Produktregel auf an.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Löse die Gleichung nach auf.
Schritt 2.3.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3.2
Setze gleich und löse nach auf.
Schritt 2.3.2.1
Setze gleich .
Schritt 2.3.2.2
Löse nach auf.
Schritt 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.3.2.2.2
Vereinfache .
Schritt 2.3.2.2.2.1
Schreibe als um.
Schritt 2.3.2.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.3.2.2.2.3
Plus oder Minus ist .
Schritt 2.3.3
Setze gleich und löse nach auf.
Schritt 2.3.3.1
Setze gleich .
Schritt 2.3.3.2
Löse nach auf.
Schritt 2.3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.3.3.2.3
Vereinfache .
Schritt 2.3.3.2.3.1
Schreibe als um.
Schritt 2.3.3.2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.3.1.2
Schreibe als um.
Schritt 2.3.3.2.3.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.3.3.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3.3.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.3.3.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.3.3.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.2.2
Setze gleich und löse nach auf.
Schritt 4.2.2.1
Setze gleich .
Schritt 4.2.2.2
Löse nach auf.
Schritt 4.2.2.2.1
Setze gleich .
Schritt 4.2.2.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.3
Setze gleich und löse nach auf.
Schritt 4.2.3.1
Setze gleich .
Schritt 4.2.3.2
Löse nach auf.
Schritt 4.2.3.2.1
Setze gleich .
Schritt 4.2.3.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4.3
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Zähler.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Subtrahiere von .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.2
Vereinfache den Nenner.
Schritt 6.2.2.1
Addiere und .
Schritt 6.2.2.2
Subtrahiere von .
Schritt 6.2.2.3
Potenziere mit .
Schritt 6.2.2.4
Potenziere mit .
Schritt 6.2.3
Vereinfache den Ausdruck.
Schritt 6.2.3.1
Mutltipliziere mit .
Schritt 6.2.3.2
Mutltipliziere mit .
Schritt 6.2.3.3
Dividiere durch .
Schritt 6.2.4
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache den Zähler.
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Subtrahiere von .
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.2
Vereinfache den Nenner.
Schritt 7.2.2.1
Addiere und .
Schritt 7.2.2.2
Subtrahiere von .
Schritt 7.2.2.3
Potenziere mit .
Schritt 7.2.2.4
Potenziere mit .
Schritt 7.2.3
Vereinfache den Ausdruck.
Schritt 7.2.3.1
Mutltipliziere mit .
Schritt 7.2.3.2
Mutltipliziere mit .
Schritt 7.2.3.3
Dividiere durch .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache den Zähler.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Subtrahiere von .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.2
Vereinfache den Nenner.
Schritt 8.2.2.1
Addiere und .
Schritt 8.2.2.2
Subtrahiere von .
Schritt 8.2.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.2.4
Potenziere mit .
Schritt 8.2.2.5
Mutltipliziere mit .
Schritt 8.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.2.4
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Schritt 9.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 9.2
Vereinfache das Ergebnis.
Schritt 9.2.1
Vereinfache den Zähler.
Schritt 9.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 9.2.1.2
Subtrahiere von .
Schritt 9.2.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 9.2.1.4
Mutltipliziere mit .
Schritt 9.2.2
Vereinfache den Nenner.
Schritt 9.2.2.1
Addiere und .
Schritt 9.2.2.2
Subtrahiere von .
Schritt 9.2.2.3
Potenziere mit .
Schritt 9.2.2.4
Potenziere mit .
Schritt 9.2.3
Vereinfache den Ausdruck.
Schritt 9.2.3.1
Mutltipliziere mit .
Schritt 9.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.2.4
Die endgültige Lösung ist .
Schritt 9.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 10
Schritt 10.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2
Vereinfache das Ergebnis.
Schritt 10.2.1
Vereinfache den Zähler.
Schritt 10.2.1.1
Potenziere mit .
Schritt 10.2.1.2
Subtrahiere von .
Schritt 10.2.1.3
Potenziere mit .
Schritt 10.2.2
Vereinfache den Nenner.
Schritt 10.2.2.1
Addiere und .
Schritt 10.2.2.2
Subtrahiere von .
Schritt 10.2.2.3
Potenziere mit .
Schritt 10.2.2.4
Potenziere mit .
Schritt 10.2.3
Vereinfache den Ausdruck.
Schritt 10.2.3.1
Mutltipliziere mit .
Schritt 10.2.3.2
Mutltipliziere mit .
Schritt 10.2.3.3
Dividiere durch .
Schritt 10.2.4
Die endgültige Lösung ist .
Schritt 10.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache den Zähler.
Schritt 11.2.1.1
Potenziere mit .
Schritt 11.2.1.2
Subtrahiere von .
Schritt 11.2.1.3
Potenziere mit .
Schritt 11.2.2
Vereinfache den Nenner.
Schritt 11.2.2.1
Addiere und .
Schritt 11.2.2.2
Subtrahiere von .
Schritt 11.2.2.3
Potenziere mit .
Schritt 11.2.2.4
Potenziere mit .
Schritt 11.2.3
Vereinfache den Ausdruck.
Schritt 11.2.3.1
Mutltipliziere mit .
Schritt 11.2.3.2
Mutltipliziere mit .
Schritt 11.2.3.3
Dividiere durch .
Schritt 11.2.4
Die endgültige Lösung ist .
Schritt 11.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 12
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 13