Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.3
Addiere und .
Schritt 1.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.5
Bringe auf die linke Seite von .
Schritt 1.1.2.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.8
Addiere und .
Schritt 1.1.2.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.10
Multipliziere.
Schritt 1.1.2.10.1
Mutltipliziere mit .
Schritt 1.1.2.10.2
Mutltipliziere mit .
Schritt 1.1.2.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.12
Bringe auf die linke Seite von .
Schritt 1.1.3
Vereinfache.
Schritt 1.1.3.1
Wende das Distributivgesetz an.
Schritt 1.1.3.2
Wende das Distributivgesetz an.
Schritt 1.1.3.3
Wende das Distributivgesetz an.
Schritt 1.1.3.4
Wende das Distributivgesetz an.
Schritt 1.1.3.5
Vereinfache den Zähler.
Schritt 1.1.3.5.1
Vereinfache jeden Term.
Schritt 1.1.3.5.1.1
Mutltipliziere mit .
Schritt 1.1.3.5.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.3.5.1.2.1
Bewege .
Schritt 1.1.3.5.1.2.2
Mutltipliziere mit .
Schritt 1.1.3.5.1.2.2.1
Potenziere mit .
Schritt 1.1.3.5.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.3.5.1.2.3
Addiere und .
Schritt 1.1.3.5.1.3
Mutltipliziere mit .
Schritt 1.1.3.5.1.4
Mutltipliziere mit .
Schritt 1.1.3.5.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.3.5.1.5.1
Bewege .
Schritt 1.1.3.5.1.5.2
Mutltipliziere mit .
Schritt 1.1.3.5.1.5.2.1
Potenziere mit .
Schritt 1.1.3.5.1.5.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.3.5.1.5.3
Addiere und .
Schritt 1.1.3.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 1.1.3.5.2.1
Addiere und .
Schritt 1.1.3.5.2.2
Addiere und .
Schritt 1.1.3.5.3
Addiere und .
Schritt 1.1.3.6
Stelle die Terme um.
Schritt 1.1.3.7
Vereinfache den Nenner.
Schritt 1.1.3.7.1
Schreibe als um.
Schritt 1.1.3.7.2
Stelle und um.
Schritt 1.1.3.7.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.1.3.7.4
Wende die Produktregel auf an.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Dividiere durch .
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.2.2
Setze gleich und löse nach auf.
Schritt 4.2.2.1
Setze gleich .
Schritt 4.2.2.2
Löse nach auf.
Schritt 4.2.2.2.1
Setze gleich .
Schritt 4.2.2.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.3
Setze gleich und löse nach auf.
Schritt 4.2.3.1
Setze gleich .
Schritt 4.2.3.2
Löse nach auf.
Schritt 4.2.3.2.1
Setze gleich .
Schritt 4.2.3.2.2
Löse nach auf.
Schritt 4.2.3.2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.3.2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.3.2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.3.2.2.2.2
Vereinfache die linke Seite.
Schritt 4.2.3.2.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.2.3.2.2.2.2.2
Dividiere durch .
Schritt 4.2.3.2.2.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.2.2.2.3.1
Dividiere durch .
Schritt 4.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4.3
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Ausdruck.
Schritt 6.2.1.1
Entferne die Klammern.
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache den Nenner.
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Mutltipliziere mit .
Schritt 6.2.2.3
Addiere und .
Schritt 6.2.2.4
Potenziere mit .
Schritt 6.2.2.5
Potenziere mit .
Schritt 6.2.2.6
Mutltipliziere mit .
Schritt 6.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.4
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Entferne die Klammern.
Schritt 7.2.2
Vereinfache den Zähler.
Schritt 7.2.2.1
Mutltipliziere mit .
Schritt 7.2.2.2
Kombiniere und .
Schritt 7.2.3
Vereinfache den Nenner.
Schritt 7.2.3.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 7.2.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.3.3
Subtrahiere von .
Schritt 7.2.3.4
Wende die Produktregel auf an.
Schritt 7.2.3.5
Multipliziere .
Schritt 7.2.3.5.1
Mutltipliziere mit .
Schritt 7.2.3.5.2
Mutltipliziere mit .
Schritt 7.2.3.6
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 7.2.3.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.3.8
Addiere und .
Schritt 7.2.3.9
Wende die Produktregel auf an.
Schritt 7.2.3.10
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.3.11
Potenziere mit .
Schritt 7.2.3.12
Potenziere mit .
Schritt 7.2.3.13
Potenziere mit .
Schritt 7.2.4
Kombiniere Brüche.
Schritt 7.2.4.1
Dividiere durch .
Schritt 7.2.4.2
Mutltipliziere mit .
Schritt 7.2.4.3
Mutltipliziere mit .
Schritt 7.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.2.6
Multipliziere .
Schritt 7.2.6.1
Kombiniere und .
Schritt 7.2.6.2
Mutltipliziere mit .
Schritt 7.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.8
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Kombiniere Brüche.
Schritt 8.2.1.1
Entferne die Klammern.
Schritt 8.2.1.2
Kombiniere und .
Schritt 8.2.2
Vereinfache den Nenner.
Schritt 8.2.2.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 8.2.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.2.2.3
Addiere und .
Schritt 8.2.2.4
Wende die Produktregel auf an.
Schritt 8.2.2.5
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 8.2.2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.2.2.7
Subtrahiere von .
Schritt 8.2.2.8
Wende die Produktregel auf an.
Schritt 8.2.2.9
Potenziere mit .
Schritt 8.2.2.10
Potenziere mit .
Schritt 8.2.2.11
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.2.12
Potenziere mit .
Schritt 8.2.3
Kombiniere Brüche.
Schritt 8.2.3.1
Dividiere durch .
Schritt 8.2.3.2
Mutltipliziere mit .
Schritt 8.2.3.3
Mutltipliziere mit .
Schritt 8.2.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.2.5
Multipliziere .
Schritt 8.2.5.1
Kombiniere und .
Schritt 8.2.5.2
Mutltipliziere mit .
Schritt 8.2.6
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Schritt 9.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 9.2
Vereinfache das Ergebnis.
Schritt 9.2.1
Vereinfache den Ausdruck.
Schritt 9.2.1.1
Entferne die Klammern.
Schritt 9.2.1.2
Mutltipliziere mit .
Schritt 9.2.2
Vereinfache den Nenner.
Schritt 9.2.2.1
Addiere und .
Schritt 9.2.2.2
Mutltipliziere mit .
Schritt 9.2.2.3
Subtrahiere von .
Schritt 9.2.2.4
Potenziere mit .
Schritt 9.2.2.5
Potenziere mit .
Schritt 9.2.3
Mutltipliziere mit .
Schritt 9.2.4
Die endgültige Lösung ist .
Schritt 9.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 10
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 11