Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Es sei . Ersetze für alle .
Schritt 2.2.3
Faktorisiere aus heraus.
Schritt 2.2.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.2
Faktorisiere aus heraus.
Schritt 2.2.3.3
Faktorisiere aus heraus.
Schritt 2.2.4
Ersetze alle durch .
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4.2.2
Vereinfache .
Schritt 2.4.2.2.1
Schreibe als um.
Schritt 2.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.4.2.2.3
Plus oder Minus ist .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Schritt 2.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5.2.3
Jede Wurzel von ist .
Schritt 2.5.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.5.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Potenziere mit .
Schritt 5.2.1.4
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 6.2.1.1.1
Wende die Produktregel auf an.
Schritt 6.2.1.1.2
Wende die Produktregel auf an.
Schritt 6.2.1.2
Potenziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.1.5
Potenziere mit .
Schritt 6.2.1.6
Kombiniere und .
Schritt 6.2.1.7
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 6.2.1.7.1
Wende die Produktregel auf an.
Schritt 6.2.1.7.2
Wende die Produktregel auf an.
Schritt 6.2.1.8
Potenziere mit .
Schritt 6.2.1.9
Mutltipliziere mit .
Schritt 6.2.1.10
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.1.11
Potenziere mit .
Schritt 6.2.1.12
Kombiniere und .
Schritt 6.2.1.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 6.2.3.1
Mutltipliziere mit .
Schritt 6.2.3.2
Mutltipliziere mit .
Schritt 6.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.5
Vereinfache den Zähler.
Schritt 6.2.5.1
Mutltipliziere mit .
Schritt 6.2.5.2
Subtrahiere von .
Schritt 6.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.7
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Wende die Produktregel auf an.
Schritt 7.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.1.4
Kombiniere und .
Schritt 7.2.1.5
Wende die Produktregel auf an.
Schritt 7.2.1.6
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.1.7
Potenziere mit .
Schritt 7.2.1.8
Kombiniere und .
Schritt 7.2.1.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 7.2.3.1
Mutltipliziere mit .
Schritt 7.2.3.2
Mutltipliziere mit .
Schritt 7.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.5
Vereinfache den Zähler.
Schritt 7.2.5.1
Mutltipliziere mit .
Schritt 7.2.5.2
Subtrahiere von .
Schritt 7.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.7
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache jeden Term.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.2
Subtrahiere von .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 10