Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Schritt 2.2.2.1
Faktorisiere durch Gruppieren.
Schritt 2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1.2
Schreibe um als plus
Schritt 2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9